scispace - formally typeset
Open AccessJournal ArticleDOI

Grain Boundary Engineering for Achieving High Thermoelectric Performance in n-Type Skutterudites

TLDR
In this paper, a liquid phase compaction method is used to fabricate low-angle grain boundaries with dense dislocation arrays, which shows the typical feature of lowangle grain boundary with denser dislocation array.
Abstract
Grain or phase boundaries play a critical role in the carrier and phonon transport in bulk thermoelectric materials. Previous investigations about controlling boundaries primarily focused on the reducing grain size or forming nanoinclusions. Herein, liquid phase compaction method is first used to fabricate the Yb-filled CoSb3 with excess Sb content, which shows the typical feature of low-angle grain boundaries with dense dislocation arrays. Seebeck coefficients show a dramatic increase via energy filtering effect through dislocation arrays with little deterioration on the carrier mobility, which significantly enhances the power factor over a broad temperature range with a high room-temperature value around 47 μW cm−2 K−1. Simultaneously, the lattice thermal conductivity could be further suppressed via scattering phonons via dense dislocation scattering. As a result, the highest average figure of merit ZT of ≈1.08 from 300 to 850 K could be realized, comparable to the best reported result of single or triple-filled Skutterudites. This work clearly points out that low-angle grain boundaries fabricated by liquid phase compaction method could concurrently optimize the electrical and thermal transport properties leading to an obvious enhancement of both power factor and ZT.

read more

Citations
More filters
Journal ArticleDOI

Advanced Thermoelectric Design: From Materials and Structures to Devices

TL;DR: This review aims to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics.
Journal ArticleDOI

High Performance Thermoelectric Materials: Progress and Their Applications

TL;DR: In this article, the authors focus on major novel strategies to achieve high-performance thermoelectric (TE) materials and their applications, and present a review of these strategies.
Journal ArticleDOI

Advances in thermoelectrics

TL;DR: In this article, a thermoelectric generator is used to directly convert heat into electricity, which holds great promise for tackling the ever-increasing energy sustainability issue in the future.
Journal ArticleDOI

Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties

TL;DR: In this article, the authors demonstrate that by tuning the carrier scattering mechanism in n-type Mg3Sb2-based materials, it is possible to noticeably improve the Hall mobility, from ∼19 to ∼77 cm2 V−1 s−1, and hence substantially increase the power factor by a factor of 3.
Journal ArticleDOI

Routes for high-performance thermoelectric materials

TL;DR: In this article, the authors summarize the recent advances in bulk thermoelectric materials with reduced lattice thermal conductivity by nano-microstructure control and also newly discovered materials with intrinsically low lattice therm conductivity.
References
More filters
BookDOI

CRC Handbook of Thermoelectrics

TL;DR: In this article, Rowe et al. proposed a method for reducing the thermal conductivity of a thermoelectric generator by reducing the carrier concentration of the generator, which was shown to improve the generator's performance.
Journal ArticleDOI

Alternative energy technologies

TL;DR: Fossil fuels currently supply most of the world's energy needs, and however unacceptable their long-term consequences, the supplies are likely to remain adequate for the next few generations.
Journal ArticleDOI

Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit

TL;DR: In the temperature range 600 to 900 kelvin, the AgPbmSbTe2+m material is expected to outperform all reported bulk thermoelectrics, thereby earmarking it as a material system for potential use in efficient thermoeLECTric power generation from heat sources.
Journal ArticleDOI

Model for Lattice Thermal Conductivity at Low Temperatures

TL;DR: In this article, a phenomenological model is developed to facilitate calculation of lattice thermal conductivities at low temperatures, where the phonon scattering processes can be represented by frequency-dependent relaxation times.
Journal ArticleDOI

Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials

TL;DR: A class of thermoelectric materials has been synthesized with a thermoeLECTric figure of merit ZT near 1 at 800 kelvin, which is comparable to the best ZT values obtained for any previously studied thermOElectric material.
Related Papers (5)