scispace - formally typeset
Open AccessJournal ArticleDOI

Graphene oxide mode-locked femtosecond erbium-doped fiber lasers

Reads0
Chats0
TLDR
The femtosecond erbium-doped all-fiber lasers mode-locked with graphene oxide demonstrated are comparable with those of graphene saturable absorbers and the superiority of easy fabrication and hydrophilic property of graphene oxide will facilitate its potential applications for ultrafast photonics.
Abstract
We demonstrated the femtosecond erbium-doped all-fiber lasers mode-locked with graphene oxide, which can be conveniently obtained from natural graphite by simple oxidation and ultra-sonication process. With proper dispersion management in an all-fiber ring cavity, the laser directly generated 200 fs pulses at a repetition rate of 22.9 MHz and the average output power was 5.8 mW. With the variation of net cavity dispersion, output pulses with pulse width of 0.2~3 ps were obtained at a repetition rate of 22.9~0.93 MHz. These results are comparable with those of graphene saturable absorbers and the superiority of easy fabrication and hydrophilic property of graphene oxide will facilitate its potential applications for ultrafast photonics.

read more

Citations
More filters
Journal ArticleDOI

Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

TL;DR: In this paper, the authors demonstrate comprehensive studies on graphene oxide and reduced graphene oxide (rGO) based saturable absorbers (SA) for mode-locking of Er-doped fiber lasers.
Journal ArticleDOI

Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

TL;DR: It has been shown that GO might be successfully used as an efficient SA without the need of its reduction to rGO, and seems to be a good candidate as a cost-effective material for saturable absorbers for Er-doped fiber lasers.
Journal ArticleDOI

Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics

TL;DR: In this article, an ultrathin epitaxial graphite graphite (NPEG) was grown by thermal decomposition on the (0001) surface of 6H-SiC and characterized by surface-science techniques.
Journal ArticleDOI

A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator.

TL;DR: The use of a bulk-structured Bi(2)Te(3) topological insulator (TI) as an ultrafast mode-locker to generate femtosecond pulses from an all-fiberized cavity indicates that high-crystalline-quality atomic-layered films of TI, which demand complicated and expensive material processing facilities, are not essential for ultrafast laser mode-locking applications.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Graphene photonics and optoelectronics

TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Journal ArticleDOI

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition

TL;DR: The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Related Papers (5)