scispace - formally typeset
Open AccessJournal ArticleDOI

Gut Microbiota–Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients With Stroke and Is Related to Proinflammatory Monocytes

Reads0
Chats0
TLDR
The data support the notion that TMAO-related increase of proinflammatory monocytes may add to elevated cardiovascular risk of patients with increased TMAOs, as well as in mice with depleted gut microbiota.
Abstract
Objective- Gut microbiota-dependent metabolites, in particular trimethylamine N-oxide (TMAO), have recently been reported to promote atherosclerosis and thrombosis. Here, we examined for the first time the relation of TMAO and the risk of incident cardiovascular events in patients with recent first-ever ischemic stroke in 2 independent prospective cohorts. Moreover, the link between TMAO and proinflammatory monocytes as a potential contributing factor for cardiovascular risk in stroke patients was studied. Approach and Results- In a first study (n=78), higher TMAO plasma levels were linked with an increased risk of incident cardiovascular events including myocardial infarction, recurrent stroke, and cardiovascular death (fourth quartile versus first quartile; hazard ratio, 2.31; 95% CI, 1.25-4.23; P<0.01). In the second independent validation cohort (n=593), high TMAO levels again heralded marked increased risk of adverse cardiovascular events (fourth quartile versus first quartile; hazard ratio, 5.0; 95% CI, 1.7-14.8; P<0.01), and also after adjustments for cardiovascular risk factors including hypertension, diabetes mellitus, LDL (low-density lipoprotein) cholesterol, and estimated glomerular filtration rate (hazard ratio, 3.3; 95% CI, 1.2-10.9; P=0.04). A significant correlation was also found between TMAO levels and percentage of proinflammatory intermediate CD14++CD16+ monocytes ( r=0.70; P<0.01). Moreover, in mice fed a diet enriched with choline to increase TMAO synthesis, levels of proinflammatory murine Ly6Chigh monocytes were higher than in the chow-fed control group (choline: 9.2±0.5×103 per mL versus control: 6.5±0.5×103 per mL; P<0.01). This increase was abolished in mice with depleted gut microbiota (choline+antibiotics: 5.4±0.7×103 per mL; P<0.001 versus choline). Conclusions- The present study demonstrates for the first time a graded relation between TMAO levels and the risk of subsequent cardiovascular events in patients with recent prior ischemic stroke. Our data support the notion that TMAO-related increase of proinflammatory monocytes may add to elevated cardiovascular risk of patients with increased TMAO levels.

read more

Citations
More filters
Journal ArticleDOI

Gut microbiota in human metabolic health and disease.

TL;DR: How the gut microbiota and derived microbial compounds may contribute to human metabolic health and to the pathogenesis of common metabolic diseases are discussed, and examples of microbiota-targeted interventions aiming to optimize metabolic health are highlighted.
Journal ArticleDOI

Metabolomics for Investigating Physiological and Pathophysiological Processes

TL;DR: How metabolomics is yielding important new insights into a number of important biological and physiological processes is explored, with a major focus on illustrating how metabolomics and discoveries made through metabolomics are improving the understanding of both normal physiology and the pathophysiology of many diseases.
Journal ArticleDOI

Gut Microbiota and Cardiovascular Disease.

TL;DR: Recent advances of microbiome research in CVD and related cardiometabolic phenotypes that have helped to move the field forward from associative to causative results are summarized.
Journal ArticleDOI

Targeting inflammation in atherosclerosis — from experimental insights to the clinic

TL;DR: Soehnlein et al. as discussed by the authors consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms.
References
More filters
Journal ArticleDOI

Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment

TL;DR: The TOAST stroke subtype classification system is easy to use and has good interobserver agreement and should allow investigators to report responses to treatment among important subgroups of patients with ischemic stroke.
Journal ArticleDOI

A core gut microbiome in obese and lean twins

TL;DR: The faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers are characterized to address how host genotype, environmental exposure and host adiposity influence the gut microbiome.
Journal ArticleDOI

Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

TL;DR: Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease.
Journal ArticleDOI

Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk

TL;DR: The production of TMAO from dietary phosphatidylcholine is dependent on metabolism by the intestinal microbiota and increased levels are associated with an increased risk of incident major adverse cardiovascular events.
Related Papers (5)