scispace - formally typeset
Open AccessJournal ArticleDOI

High-speed black phosphorus field-effect transistors approaching ballistic limit.

TLDR
It is shown that the transport properties of BP device under high electric field can be improved greatly by the interface engineering of high-quality HfLaO dielectrics and transport orientation and by designing the device channels along the lower effective mass armchair direction.
Abstract
As a strong candidate for future electronics, atomically thin black phosphorus (BP) has attracted great attention in recent years because of its tunable bandgap and high carrier mobility. Here, we show that the transport properties of BP device under high electric field can be improved greatly by the interface engineering of high-quality HfLaO dielectrics and transport orientation. By designing the device channels along the lower effective mass armchair direction, a record-high drive current up to 1.2 mA/μm at 300 K and 1.6 mA/μm at 20 K can be achieved in a 100-nm back-gated BP transistor, surpassing any two-dimensional semiconductor transistors reported to date. The highest hole saturation velocity of 1.5 × 107 cm/s is also achieved at room temperature. Ballistic transport shows a record-high 36 and 79% ballistic efficiency at room temperature and 20 K, respectively, which is also further verified by theoretical simulations.

read more

Citations
More filters
Journal ArticleDOI

Promises and prospects of two-dimensional transistors

TL;DR: In this article, the authors review the promise and current status of 2D transistors, and emphasize that widely used device parameters (such as carrier mobility and contact resistance) could be frequently misestimated or misinterpreted, and may not be the most reliable performance metrics for benchmarking two-dimensional transistors.
Journal ArticleDOI

Van der Waals Heterostructures for High‐Performance Device Applications: Challenges and Opportunities

TL;DR: The current status of vertical heterostructure device applications in vertical transistors, infrared photodetectors, and spintronic memory/transistors is reviewed and the relevant challenges for achieving high-performance devices are presented.
Journal ArticleDOI

Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms

TL;DR: This review comprehensively reviewed the recent studies on the interactions between BP and biomolecules, cells, and animals and summarized various cellular responses, inflammatory/immunological effects, as well as other biological outcomes of BP depending on its own physical properties, exposure routes, and biodistribution.
Journal Article

Black Phosphorus Field-effect Transistors

TL;DR: In this paper, a few-layer black phosphorus crystals with thickness down to a few nanometres are used to construct field effect transistors for nanoelectronic devices. But the performance of these materials is limited.
Journal ArticleDOI

Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets

TL;DR: Chemical functionalization is demonstrated as an efficient approach to enhance the ambient stability of black phosphorus nanosheets through various covalent and noncovalent strategies.
References
More filters
Journal ArticleDOI

Black phosphorus field-effect transistors

TL;DR: In this article, a few-layer black phosphorus crystals with thickness down to a few nanometres are used to construct field effect transistors for nanoelectronic devices. But the performance of these materials is limited.
Journal ArticleDOI

Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics

TL;DR: Black phosphorus (BP), the most stable allotrope of phosphorus with strong intrinsic in-plane anisotropy, is reintroduced to the layered-material family and shows great potential for thin-film electronics, infrared optoelectronics and novel devices in which anisotropic properties are desirable.
Journal ArticleDOI

Electronics based on two-dimensional materials

TL;DR: A review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches and the performance limits and advantages, when exploited for both digital and analog applications.
Journal ArticleDOI

Carrier mobilities in silicon empirically related to doping and field

D.M. Caughey, +1 more
TL;DR: In this article, the experimental dependence of carrier mobilities on doping density and field strength in silicon has been investigated and the curve-fitting procedures are described, which fit the experimental data.
Journal ArticleDOI

Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors

TL;DR: The ambipolar behavior coupled to the fast and broadband photodetection make few-layer black phosphorus a promising 2D material for photodetsection across the visible and near-infrared part of the electromagnetic spectrum.
Related Papers (5)