scispace - formally typeset
Open AccessJournal ArticleDOI

Hydrogen Peroxide Is Involved in Abscisic Acid-Induced Stomatal Closure in Vicia faba

Reads0
Chats0
TLDR
It is suggested that guard cells treated with ABA may close the stomata via a pathway with H(2)O(2), which may be an intermediate in ABA signaling, and H( 2)O
Abstract
One of the most important functions of the plant hormone abscisic acid (ABA) is to induce stomatal closure by reducing the turgor of guard cells under water deficit. Under environmental stresses, hydrogen peroxide (H 2 O 2 ), an active oxygen species, is widely generated in many biological systems. Here, using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide evidence that H 2 O 2 may function as an intermediate in ABA signaling in Vicia faba guard cells. H 2 O 2 inhibited induced closure of stomata, and this effect was reversed by ascorbic acid at concentrations lower than 10 −5 m. Further, ABA-induced stomatal closure also was abolished partly by addition of exogenous catalase (CAT) and diphenylene iodonium (DPI), which are an H 2 O 2 scavenger and an NADPH oxidase inhibitor, respectively. Time course experiments of single-cell assays based on the fluorescent probe dichlorofluorescein showed that the generation of H 2 O 2 was dependent on ABA concentration and an increase in the fluorescence intensity of the chloroplast occurred significantly earlier than within the other regions of guard cells. The ABA-induced change in fluorescence intensity in guard cells was abolished by the application of CAT and DPI. In addition, ABA microinjected into guard cells markedly induced H 2 O 2 production, which preceded stomatal closure. These effects were abolished by CAT or DPI micro-injection. Our results suggest that guard cells treated with ABA may close the stomata via a pathway with H 2 O 2 production involved, and H 2 O 2 may be an intermediate in ABA signaling.

read more

Citations
More filters
Journal ArticleDOI

Localization of hydrogen peroxide accumulation and diamine oxidase activity in pea root nodules under aluminum stress

TL;DR: Results suggest the involvement of DAO in the production of a large amount of H2O2 in the nodule apoplast under Al stress, and the role of reactive oxygen species in pea-Rhizobium symbiosis under Al Stress is discussed.
Journal ArticleDOI

The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes

TL;DR: In this paper, the authors compared two application methods for treatment with a synthetic analog of Strigolactone, GR24, and found that different methods of GR24 application led to increased photosynthesis and yield under stress by a combination of drought tolerance and escape factors, which should be considered for future research exploring the potential of this new family of bioactive molecules for practical applications.
Journal ArticleDOI

Copper amine oxidase-catalysed hydrogen peroxide involves production of nitric oxide in darkness-induced stomatal closure in broad bean.

TL;DR: Evidence is provided that copper amine oxidase (CuAO) was involved in H2O2 production in darkness-induced stomatal closure in Vicia faba L.
Journal ArticleDOI

Cloning and molecular characterization of phospholipase D (PLD) delta gene from longan (Dimocarpus longan Lour.)

TL;DR: The Q-RT-PCR result showed that the level of LgPLDδ mRNA expression was higher in senescent tissues than in developing tissues, which was also high in postharvest fruit, which provided a scientific basis for further investigating the mechanism of postHarvest longan fruit adapting to environmental stress.
References
More filters
Journal ArticleDOI

ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control

TL;DR: A detailed account of current knowledge of the biosynthesis, compartmentation, and transport of these two important antioxidants, with emphasis on the unique insights and advances gained by molecular exploration are provided.
Journal ArticleDOI

H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response

TL;DR: It is reported here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants.
Journal ArticleDOI

Superoxide dismutase and stress tolerance

TL;DR: Prospects for Stress Tolerance through Genetic Engineering of SOD and MnSOD Overexpression are surveyed, and the Mechanism of Sod Regulation is studied.
Journal ArticleDOI

Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells

TL;DR: Activation of Ca2+-permeable channels in the plasma membrane of Arabidopsis guard cells by hydrogen peroxide indicates that ABA-induced H2O2 production and the H 2O 2-activated Ca2-activated channels are important mechanisms for A BA-induced stomatal closing.
Journal ArticleDOI

Oxygen Stress and Superoxide Dismutases

TL;DR: The accumulation of dioxygen in Earth's atmosphere allowed for the evolution of aerobic organisms that use O2 as the terminal electron acceptor, thus providing a higher yield of energy compared with fermentation and anaerobic respiration.
Related Papers (5)