scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The rise of deep learning in drug discovery.

TL;DR: The first wave of applications of deep learning in pharmaceutical research has emerged in recent years, and its utility has gone beyond bioactivity predictions and has shown promise in addressing diverse problems in drug discovery.
Posted Content

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

TL;DR: A new geocentric embedding is proposed for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity to facilitate the use of perception in fields like robotics.
Posted Content

Universal adversarial perturbations

TL;DR: In this paper, the existence of a universal (image-agnostic) and very small perturbation vector that causes natural images to be misclassified with high probability was shown.
Proceedings ArticleDOI

Large Kernel Matters — Improve Semantic Segmentation by Global Convolutional Network

TL;DR: This work proposes a Global Convolutional Network to address both the classification and localization issues for the semantic segmentation and suggests a residual-based boundary refinement to further refine the object boundaries.
Proceedings ArticleDOI

Age and gender classification using convolutional neural networks

TL;DR: This paper proposes a simple convolutional net architecture that can be used even when the amount of learning data is limited and shows that by learning representations through the use of deep-convolutional neural networks, a significant increase in performance can be obtained on these tasks.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)