scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

High-Resolution Image Inpainting Using Multi-scale Neural Patch Synthesis

TL;DR: This work proposes a multi-scale neural patch synthesis approach based on joint optimization of image content and texture constraints, which not only preserves contextual structures but also produces high-frequency details by matching and adapting patches with the most similar mid-layer feature correlations of a deep classification network.
Journal ArticleDOI

Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs

TL;DR: Hierarchical Navigable Small World (HNSW) as mentioned in this paper is a fully graph-based approach for approximate K-nearest neighbor search without any need for additional search structures (typically used at the coarse search stage of most proximity graph techniques).
Proceedings ArticleDOI

Learning Deep Representations of Fine-Grained Visual Descriptions

TL;DR: This model achieves strong performance on zero-shot text-based image retrieval and significantly outperforms the attribute-based state-of-the-art for zero- shot classification on the Caltech-UCSD Birds 200-2011 dataset.
Proceedings ArticleDOI

Learning Dynamic Siamese Network for Visual Object Tracking

TL;DR: This paper proposes dynamic Siamese network, via a fast transformation learning model that enables effective online learning of target appearance variation and background suppression from previous frames, and presents elementwise multi-layer fusion to adaptively integrate the network outputs using multi-level deep features.
Journal ArticleDOI

Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.

TL;DR: In this paper, five pre-trained convolutional neural network-based models were proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)