scispace - formally typeset
Open AccessJournal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

Ashton C. Lai, +1 more
- 01 Feb 2017 - 
- Vol. 16, Iss: 2, pp 101-114
TLDR
Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Discovery of a Potent and Selective Degrader for USP7

TL;DR: In this paper , the authors reported the design and characterization of U7D-1 as the first selective USP7-degrading Proteolysis Targeting Chimera (PROTAC).
Posted ContentDOI

Chemoproteomics-Enabled Ligand Screening Yields Covalent RNF114-Based Degraders that Mimics Natural Product Function

TL;DR: The discovery of fully synthetic RNF114-based recruiter molecules that can also be exploited for PROTAC applications, and demonstrate their utility in degrading therapeutically relevant targets such as BRD4 and BCR-ABL in cells are reported.
Journal ArticleDOI

A critical update on the strategies towards modulators targeting androgen receptors.

TL;DR: Some new strategies for targeting androgen receptors through degradation pathways as potential treatments for prostate cancer are discussed.
Journal ArticleDOI

Integrated Mechanism of Lysine 351, PARK2, and STUB1 in AβPP Ubiquitination

TL;DR: The structure of AβPP is modeled and its topologies determined, the impact of lysine residues in Aβ PP stability is studied, and the key ubiquitination enzymes and their interaction network playing major role in the ubiquitinations of A βPP are identified.
Journal ArticleDOI

Design of stapled peptide-based PROTACs for MDM2/MDMX atypical degradation and tumor suppression

TL;DR: SPMI-HIF2-1 could effectively kill cancer cells and inhibit tumor progression in subcutaneous and orthotopic colorectal cancer xenograft models through simultaneously promoting the atypical degradation of both MDM2 and MDMX and durable p53 activation.
References
More filters
Journal ArticleDOI

Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings

TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Journal ArticleDOI

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity

TL;DR: The results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents and the generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.
Related Papers (5)