scispace - formally typeset
Open AccessJournal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

Ashton C. Lai, +1 more
- 01 Feb 2017 - 
- Vol. 16, Iss: 2, pp 101-114
Reads0
Chats0
TLDR
Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A Nimbolide-Based Kinase Degrader Preferentially Degrades Oncogenic BCR-ABL

TL;DR: Nimbolide is established as an additional general E3 ligase recruiter for PROTACs, and the importance of expanding upon the arsenal of E 3 ligase recruiters is demonstrated, as such molecules confer differing selectivity for the degradation of neo-substrate proteins.
Journal ArticleDOI

Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase

TL;DR: The first cell-permeable HDAC6-selective degraders employing Von Hippel-Lindau (VHL) E3 ubiquitin ligase, which does not have any known neo-substrates are reported.
Journal ArticleDOI

A caged E3 ligase ligand for PROTAC-mediated protein degradation with light

TL;DR: A light-activated degrader was designed by photocaging an essential E3 ligase binding motif in a BRD4 targeting PROTAC to achieve greater spatiotemporal control of PROTAC-induced protein degradation.
Journal ArticleDOI

Recent Developments in PROTAC-Mediated Protein Degradation: From Bench to Clinic

TL;DR: Proteolysis-targeting chimeras (PROTACs), an emerging paradigm-shifting technology, hijacks the ubiquitin-proteasome system for targeted protein degradation.
Journal ArticleDOI

Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC).

TL;DR: The discovery of small molecule EGFR degraders based on the proteolysis targeting chimera (PROTAC) strategy demonstrated that compounds 2 and 10 could serve as effective EGFRdel19-targeting degrader in HCC827 cells.
References
More filters
Journal ArticleDOI

Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings

TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Journal ArticleDOI

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity

TL;DR: The results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents and the generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.
Related Papers (5)