scispace - formally typeset
Open AccessJournal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

Ashton C. Lai, +1 more
- 01 Feb 2017 - 
- Vol. 16, Iss: 2, pp 101-114
TLDR
Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Development of a Hematopoietic Prostaglandin D Synthase-Degradation Inducer.

TL;DR: In this article, a chimeric small molecule that degrades prostaglandin D via the ubiquitin-proteasome system, PROTAC(H-PGDS)-1, was developed.
Journal ArticleDOI

Selective Degradation of Target Proteins by Chimeric Small-Molecular Drugs, PROTACs and SNIPERs

TL;DR: This article reviews chimeric drugs that decrease the level of specific proteins such as proteolysis targeting chimeric molecules (PROTACs) and specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs), which target proteins for proteasome-mediated degradation.
Journal ArticleDOI

Proteomics in the pharmaceutical and biotechnology industry: a look to the next decade.

TL;DR: Pioneering technologies such as proteomics have helped fuel the biotechnology and pharmaceutical industry with the discovery of novel targets and an intricate understanding of the activity of the RA as discussed by the authors.
Journal ArticleDOI

High-Throughput Quantitative Assay Technologies for Accelerating the Discovery and Optimization of Targeted Protein Degradation Therapeutics:

TL;DR: The field of targeted protein degradation is an emerging area for drug discovery in which small molecules are used to recruit E3 ubiquitin ligases to catalyze the ubiquitination and subsequent degradation of disease-causing target proteins by the proteasome in both a dose and time-dependent manner as mentioned in this paper.
Journal ArticleDOI

Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy

TL;DR: Drug discovery efforts targeting protein kinases should increasingly shift toward generation and screening of inducers of degradation and away from occupancy-based inhibitors of old.
References
More filters
Journal ArticleDOI

Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings

TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Journal ArticleDOI

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity

TL;DR: The results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents and the generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.
Related Papers (5)