scispace - formally typeset
Open AccessJournal ArticleDOI

Induced protein degradation: an emerging drug discovery paradigm

Ashton C. Lai, +1 more
- 01 Feb 2017 - 
- Vol. 16, Iss: 2, pp 101-114
TLDR
Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Structural basis of PROTAC cooperative recognition for selective protein degradation.

TL;DR: The results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.
Journal ArticleDOI

Kinase inhibitors: the road ahead

TL;DR: An overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors are provided.
Journal ArticleDOI

Drugging the 'undruggable' cancer targets

TL;DR: Four scientists working in the 'undruggable' cancer research field are asked for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.
Journal ArticleDOI

Targeting transcription factors in cancer - from undruggable to reality.

TL;DR: This Review discusses the various approaches that are being explored to target transcription factors in cancer, with many of the inhibitors developed from such approaches now advancing to early clinical trials.
Journal ArticleDOI

Expanding the medicinal chemistry synthetic toolbox

TL;DR: Opportunities for the expansion of the medicinal chemists' synthetic toolbox are highlighted to enable enhanced impact of new methodologies in future drug discovery.
References
More filters
Journal ArticleDOI

CpG Motifs in Bacterial DNA and Their Immune Effects

TL;DR: Oligodeoxynucleotides containing CpG ODN enhance the development of acquired immune responses for prophylactic and therapeutic vaccination and protect against lethal challenge with a wide variety of pathogens.
Journal ArticleDOI

Expression profiling reveals off-target gene regulation by RNAi

TL;DR: This paper used gene expression profiling to characterize the specificity of gene silencing by siRNAs in cultured human cells and found that siRNA-specific rather than target-specific signatures revealed direct silencing of nontargeted genes containing as few as eleven contiguous nucleotides of identity to the siRNA.
Journal ArticleDOI

RING Domain E3 Ubiquitin Ligases

TL;DR: RING E3s have been linked to the control of many cellular processes and to multiple human diseases, and knowledge of the physiological partners, biological functions, substrates, and mechanism of action for most RING E 3s remains at a rudimentary stage.
Journal ArticleDOI

The development of androgen-independent prostate cancer

TL;DR: It is predicted that understanding the pathways that lead to the development of androgen-independent prostate cancer will pave the way to effective therapies for these, at present, untreatable cancers.
Journal ArticleDOI

Function and regulation of cullin-RING ubiquitin ligases.

TL;DR: This review focuses on the composition, regulation and function of cullin–RING ligases, and describes how these enzymes can be characterized by a set of general principles.
Related Papers (5)