scispace - formally typeset
Open AccessJournal ArticleDOI

Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice

TLDR
It is demonstrated that metronomic Myc inhibition not only contains Ras-driven lung tumors indefinitely, but also leads to their progressive eradication, endorsing Myc as a compelling cancer drug target.
Abstract
The principal reason for failure of targeted cancer therapies is the emergence of resistant clones that regenerate the tumor. Therapeutic efficacy therefore depends on not only how effectively a drug inhibits its target, but also the innate or adaptive functional redundancy of that target and its attendant pathway. In this regard, the Myc transcription factors are intriguing therapeutic targets because they serve the unique and irreplaceable role of coordinating expression of the many diverse genes that, together, are required for somatic cell proliferation. Furthermore, Myc expression is deregulated in most—perhaps all—cancers, underscoring its irreplaceable role in proliferation. We previously showed in a preclinical mouse model of non-small-cell lung cancer that systemic Myc inhibition using the dominant-negative Myc mutant Omomyc exerts a dramatic therapeutic impact, triggering rapid regression of tumors with only mild and fully reversible side effects. Using protracted episodic expression of Omomyc, we now demonstrate that metronomic Myc inhibition not only contains Ras-driven lung tumors indefinitely, but also leads to their progressive eradication. Hence, Myc does indeed serve a unique and nondegenerate role in lung tumor maintenance that cannot be complemented by any adaptive mechanism, even in the most aggressive p53-deficient tumors. These data endorse Myc as a compelling cancer drug target.

read more

Content maybe subject to copyright    Report

Citations
More filters
Patent

Max binders as myc modulators and uses thereof

TL;DR: In this paper, the MAX binders and/or modulators of Myc, Mad, or Mxi1 (e.g., inhibitors of myc, mad, or mxi1) were described and methods of using and uses of the compounds, compositions, and kits.
Journal ArticleDOI

A New Insight into MYC Action: Control of RNA Polymerase II Methylation and Transcription Termination

TL;DR: The data point to a MYC/ PRMT5/RNAPII axis that controls termination via RNAPII dimethylation (R1810me2s) and may contribute to fine-tune the expression of genes altered by MYC overexpression in cancer cells, it remains to be seen which role this may have in tumor development and maintenance.
Posted ContentDOI

Acidic fibroblast growth factor underlies microenvironmental regulation of MYC in pancreatic cancer

TL;DR: It is demonstrated that acidic fibroblast growth factor (FGF1) derived from cancer-associated fibroblasts (CAFs) cooperates with cancer cell-autonomous signals to increase MYC level, promoter occupancy, and activity, and establishes CAF-derived FGF1 as a novel paracrine regulator of oncogenic transcription.
References
More filters
Journal ArticleDOI

Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras

TL;DR: It is shown that the use of a recombinant adenovirus expressing Cre recombinase (AdenoCre) to induce K-ras G12D expression in the lungs of mice allows control of the timing and multiplicity of tumor initiation.
Journal ArticleDOI

Modelling Myc inhibition as a cancer therapy

TL;DR: It is shown that Myc inhibition triggers rapid regression of incipient and established lung tumours, defining an unexpected role for endogenous Myc function in the maintenance of Ras-dependent tumours in vivo.
Related Papers (5)