scispace - formally typeset
Journal ArticleDOI

Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies

TLDR
In this article, the authors compare the performance of SiC, GaN, and ZnSe for high-temperature electronics and short-wavelength optical applications and conclude that SiC is the leading contender for high temperature and high power applications if ohmic contacts and interface state densities can be further improved.
Abstract
In the past several years, research in each of the wide‐band‐gap semiconductors, SiC, GaN, and ZnSe, has led to major advances which now make them viable for device applications. The merits of each contender for high‐temperature electronics and short‐wavelength optical applications are compared. The outstanding thermal and chemical stability of SiC and GaN should enable them to operate at high temperatures and in hostile environments, and also make them attractive for high‐power operation. The present advanced stage of development of SiC substrates and metal‐oxide‐semiconductor technology makes SiC the leading contender for high‐temperature and high‐power applications if ohmic contacts and interface‐state densities can be further improved. GaN, despite fundamentally superior electronic properties and better ohmic contact resistances, must overcome the lack of an ideal substrate material and a relatively advanced SiC infrastructure in order to compete in electronics applications. Prototype transistors have been fabricated from both SiC and GaN, and the microwave characteristics and high‐temperature performance of SiC transistors have been studied. For optical emitters and detectors, ZnSe, SiC, and GaN all have demonstrated operation in the green, blue, or ultraviolet (UV) spectra. Blue SiC light‐emitting diodes (LEDs) have been on the market for several years, joined recently by UV and blue GaN‐based LEDs. These products should find wide use in full color display and other technologies. Promising prototype UV photodetectors have been fabricated from both SiC and GaN. In laser development, ZnSe leads the way with more sophisticated designs having further improved performance being rapidly demonstrated. If the low damage threshold of ZnSe continues to limit practical laser applications, GaN appears poised to become the semiconductor of choice for short‐wavelength lasers in optical memory and other applications. For further development of these materials to be realized, doping densities (especially p type) and ohmic contact technologies have to be improved. Economies of scale need to be realized through the development of larger SiC substrates. Improved substrate materials, ideally GaN itself, need to be aggressively pursued to further develop the GaN‐based material system and enable the fabrication of lasers. ZnSe material quality is already outstanding and now researchers must focus their attention on addressing the short lifetimes of ZnSe‐based lasers to determine whether the material is sufficiently durable for practical laser applications. The problems related to these three wide‐band‐gap semiconductor systems have moved away from materials science toward the device arena, where their technological development can rapidly be brought to maturity.

read more

Citations
More filters
Patent

Light emitting diode (LED) based lighting systems

Yi-Qun Li
TL;DR: In this paper, a lighting system comprises at least one excitation source (5 ), preferably an LED, operable to generate and radiate excitation radiation of a first wavelength (λ 1 ); a shade ( 4 ) configured to at least in part surround the at least 1 source and remotely located thereto; and a phosphor ( 16 ) provided in or on at least a part of the shade (4), wherein the phosphor emitted radiation of different wavelength in response to incident excitation radiations.
Journal ArticleDOI

Semiconductor nanowire lasers

TL;DR: A review of the status and perspectives of semiconductor nanowire lasers, with a particular emphasis on their optical characteristics categorized in two groups: (1) waveguiding related properties in Section 3, which includes waveguide modes, near-field coupling, endface reflection, substrate-induced effects, and (2) optically pumped semiconductor Nanowire laser in Section 4, starting from principles and basic types of UV, visible, and near-IR nanowires relying on Fabry-Perot cavities, to advanced configurations including wavelength-tunable, single-mode
Journal ArticleDOI

Microwave performance of AlGaN/GaN inverted MODFET's

TL;DR: In this paper, the input characteristics of GaN-based FET's play an important role in the output power that can be obtained, and the buried AlGaN buffer layer is suggested as having assisted in the reduction of the output conductance which aids the power gain.
Journal ArticleDOI

Persistent photoconductivity in n-type GaN

TL;DR: In this paper, the results of photoconductivity measurements in undoped n-type and Se-doped GaN epitaxial thin films are presented, and the authors reveal that the origin of the PPC effect and yellow luminescence may arise from the same intrinsic defect.
Journal ArticleDOI

Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells

TL;DR: The development of complete structural AlGaN-based deep-ultraviolet light-emitting diodes with an aluminum thin layer for increasing light extraction efficiency and a 217% enhancement in peak photoluminescence intensity is observed.
References
More filters
Journal ArticleDOI

General Relationship for the Thermal Oxidation of Silicon

TL;DR: In this paper, the thermaloxidation kinetics of silicon are examined in detail based on a simple model of oxidation which takes into account the reactions occurring at the two boundaries of the oxide layer as well as the diffusion process, the general relationship x02+Ax0=B(t+τ) is derived.
Journal ArticleDOI

Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer

TL;DR: In this article, the growth condition dependence of crystalline quality is also studied, and the narrowest x-ray rocking curve from the (0006) plane is 2.70' and from the 2024 plane is 1.86' on sapphire substrates.
Journal ArticleDOI

P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)

TL;DR: In this article, the p-n junction LED using Mg-doped GaN treated with low-energy electron-beam irradiation (LEEBI) was reported for the first time.
PatentDOI

Blue-green laser diode

TL;DR: In this article, a II-VI compound semiconductor laser diode is formed from overlaying layers of material including an n-type single crystal semiconductor substrate (12), adjacent N-type and p-type guiding lasers (14), a quantum well active layer (18), and a second electrode (30) is characterized by a Fermi energy, with shallow acceptors having a shallow acceptor energy, to a net acceptor concentration of at least 1 x 1017 cm 3.
Journal ArticleDOI

The preparation and properties of vapor- deposited single-crystalline GaN

TL;DR: Vapor deposited GaN single crystals tested for electrical and optical properties, determining band gap energy, electron concentration, etc as mentioned in this paper, were tested for testing the properties of single crystals.
Related Papers (5)