scispace - formally typeset
Open AccessJournal ArticleDOI

Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives

Reads0
Chats0
TLDR
By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes, and an overview of these mechanisms is provided.
Abstract
Aminoglycoside (AG) antibiotics are used to treat many Gram-negative and some Gram-positive infections and, importantly, multidrug-resistant tuberculosis. Among various bacterial species, resistance to AGs arises through a variety of intrinsic and acquired mechanisms. The bacterial cell wall serves as a natural barrier for small molecules such as AGs and may be further fortified via acquired mutations. Efflux pumps work to expel AGs from bacterial cells, and modifications here too may cause further resistance to AGs. Mutations in the ribosomal target of AGs, while rare, also contribute to resistance. Of growing clinical prominence is resistance caused by ribosome methyltransferases. By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes. We provide here an overview of these mechanisms by which bacteria become resistant to AGs and discuss their prevalence and potential for clinical relevance.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

High Genomic Diversity of Multi-Drug Resistant Wastewater

TL;DR: The genomic diversity of the indicator Escherichia coli in a German wastewater treatment plant is analysed and it is found that while treatment plants reduce the amount of bacteria released into the environment, they do not reduce the potential for antibiotic resistance of these bacteria.
Journal ArticleDOI

Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – a minireview

TL;DR: Carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes.
Journal ArticleDOI

Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective.

TL;DR: Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Journal ArticleDOI

Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design.

TL;DR: The modes of action of many ribosome-targeting antibiotics are described, the major resistance mechanisms developed by pathogenic bacteria are highlighted, and recent advances in structure-assisted design of new molecules are discussed.
Journal ArticleDOI

Antibiotic Resistance and the MRSA Problem

TL;DR: Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
References
More filters
Journal Article

Accumulation of plasmid-mediated fluoroquinolone resistance genes, qepA and qnrS1, in Enterobacter aerogenes co-producing RmtB and class A beta-lactamase LAP-1.

TL;DR: Although the prevalence of qepA is currently low, considering the presence of ISCR3C and the possibility of co-selection and co-transferability of plasmids, more active surveillance for these multi-drug resistant bacteria and prudent use of antimicrobials are needed.
Journal ArticleDOI

Aminoglycoside resistance 16S rRNA methyltransferases block endogenous methylation, affect translation efficiency and fitness of the host

TL;DR: Compared ArmA and NpmA in isogenic Escherichia coli harboring the corresponding structural genes and their inactive point mutants cloned under the control of their native constitutive promoter in the stable plasmid pGB2 indicate that resistance methyltransferases impair endogenous methylation with different consequences on cell fitness.
Journal ArticleDOI

Outbreak of Salmonella enterica serotype Infantis producing ArmA 16S RNA methylase and CTX-M-15 extended-spectrum β-lactamase in a neonatology ward in Constantine, Algeria

TL;DR: Spread of 16S RNA methylase determinants at the same level as bla(CTX-M) genes in Enterobacteriaceae may seriously compromise the efficacy of aminoglycosides for treating Gram-negative infections.
Journal ArticleDOI

Effects of Altering Aminoglycoside Structures on Bacterial Resistance Enzyme Activities

TL;DR: It is demonstrated that the bifunctional enzyme AAC(3-Ib/AAC(6′)-Ib′ can diacetylate gentamicin, suggesting that two modifications likely provide more-robust inactivation in vivo.
Journal ArticleDOI

Structural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria

TL;DR: It is proposed that a dynamic extended loop structure that is positioned adjacent to both the bound SAM and a functionally critical structural motif may mediate concerted conformational changes in rRNA and protein that underpin the specificity of target selection and activation of methyltransferase activity.
Related Papers (5)