scispace - formally typeset
Open AccessJournal ArticleDOI

Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives

Reads0
Chats0
TLDR
By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes, and an overview of these mechanisms is provided.
Abstract
Aminoglycoside (AG) antibiotics are used to treat many Gram-negative and some Gram-positive infections and, importantly, multidrug-resistant tuberculosis. Among various bacterial species, resistance to AGs arises through a variety of intrinsic and acquired mechanisms. The bacterial cell wall serves as a natural barrier for small molecules such as AGs and may be further fortified via acquired mutations. Efflux pumps work to expel AGs from bacterial cells, and modifications here too may cause further resistance to AGs. Mutations in the ribosomal target of AGs, while rare, also contribute to resistance. Of growing clinical prominence is resistance caused by ribosome methyltransferases. By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes. We provide here an overview of these mechanisms by which bacteria become resistant to AGs and discuss their prevalence and potential for clinical relevance.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

High Genomic Diversity of Multi-Drug Resistant Wastewater

TL;DR: The genomic diversity of the indicator Escherichia coli in a German wastewater treatment plant is analysed and it is found that while treatment plants reduce the amount of bacteria released into the environment, they do not reduce the potential for antibiotic resistance of these bacteria.
Journal ArticleDOI

Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – a minireview

TL;DR: Carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes.
Journal ArticleDOI

Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective.

TL;DR: Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Journal ArticleDOI

Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design.

TL;DR: The modes of action of many ribosome-targeting antibiotics are described, the major resistance mechanisms developed by pathogenic bacteria are highlighted, and recent advances in structure-assisted design of new molecules are discussed.
Journal ArticleDOI

Antibiotic Resistance and the MRSA Problem

TL;DR: Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
References
More filters
Journal ArticleDOI

6′′‐Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes

TL;DR: Three modes of action lead to bacterial resistance to AGs: reduction in the intracellular concentration of the antibiotics by efflux pump proteins or through reduced membrane permeability; structural modifications of the 16S ribosomal RNA leading to reduced target affinity; and deactivation by AG-modifying enzymes (AMEs).
Journal ArticleDOI

Sequence of Conjugative Plasmid pIP1206 Mediating Resistance to Aminoglycosides by 16S rRNA Methylation and to Hydrophilic Fluoroquinolones by Efflux

TL;DR: Self-transferable IncFI plasmid pIP1206 carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance.
Journal ArticleDOI

Involvement of an ATP-dependent protease (PA0779/AsrA) in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa

TL;DR: The results of this work suggest that the tobramycin concentration has a significant impact on the gene expression of P. aeruginosa, with lethal concentrations resulting in immediate adaptations conferring short-term protection, such as the induction of the heat shock response, and with subinhibitory concentrations leading to more sustainable long- term protection mechanisms, suchAs increased efflux.
Related Papers (5)