scispace - formally typeset
Open AccessJournal ArticleDOI

Microbial Surface Colonization and Biofilm Development in Marine Environments

TLDR
Recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed and questions are posed for targeted investigation of surface-specific community-level microbial features to advance understanding ofsurface-associated microbial community ecology and the biogeochemical functions of these communities.
Abstract
SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.

read more

Citations
More filters
Journal ArticleDOI

Bacteria and archaea on Earth and their abundance in biofilms

TL;DR: It is proposed that biofilms drive all biogeochemical processes and represent the main way of active bacterial and archaeal life and are the most prominent and influential type of microbial life.
Journal ArticleDOI

Beyond Risk: Bacterial Biofilms and Their Regulating Approaches.

TL;DR: The events involved in bacterial biofilm formation are described, the negative and positive aspects associated with bacterial biofilms are listed, the main strategies currently used to regulate establishment of harmful bacterial bioFilms are elaborated as well as certain strategies employed to encourage formation of beneficial bacterialBiofilms.
Journal Article

Physical solutions to the public goods dilemma in bacterial biofilms

TL;DR: In this paper, the authors show that the public goods dilemma may be solved by two very different mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to nonproducers.
Journal ArticleDOI

Marine Plastic Debris: A New Surface for Microbial Colonization.

TL;DR: It is concluded that research so far has not shown Plastisphere communities to starkly differ from microbial communities on other inert surfaces, which is particularly true for mature biofilm assemblages.
References
More filters
Journal ArticleDOI

The biofilm matrix

TL;DR: The functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth are described.
Journal ArticleDOI

Bacterial biofilms: from the natural environment to infectious diseases.

TL;DR: It is evident that biofilm formation is an ancient and integral component of the prokaryotic life cycle, and is a key factor for survival in diverse environments.
Journal ArticleDOI

The Ecological Role of Water-Column Microbes in the Sea*

TL;DR: Evidence is presented to suggest that numbers of free bacteria are controlled by nanoplankton~c heterotrophic flagellates which are ubiquitous in the marine water column, thus providing the means for returning some energy from the 'microbial loop' to the conventional planktonic food chain.

Supporting Online Material for Spreading Dead Zones and Consequences for Marine Ecosystems

TL;DR: The formation of dead zones has been exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels as discussed by the authors.
Journal ArticleDOI

Spreading Dead Zones and Consequences for Marine Ecosystems

TL;DR: Dead zones in the coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning, exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels.
Related Papers (5)