scispace - formally typeset
Open Access

Mineralogical identification of stardust particles by xanes at the advanced light source.

TLDR
In this paper, the authors describe a method for doing mineralogical analysis of particles within aerogel keystones using a combination of synchrotron x-ray fluorescence at the micron scale (μXRF), X-ray near edge structure spectroscopy (XANES).
Abstract
The Stardust cometary samples are the most technically challenging returned extraterrestrial materials to date. Friable cometary particles generally disintegrated upon impact with the aerogel and are distributed along tracks that are two to three orders of magnitude larger than the typical particle size. As a result, tracks contain up to hundreds of particles that are buried deep in the aerogel tiles and are intimately mixed with aerogel. A method for doing mineralogical surveys of these particles is urgently needed. As a first step in their analysis, entire tracks can be extracted in aerogel keystones [3] or quickstones [4]. Individual particles can then be laboriously extracted, but it is impractical to do this for more than a few particles per track. Here we describe a method for doing mineralogical analysis of particles within aerogel keystones using a combination of synchrotron x-ray fluorescence at the micron scale (μXRF), x-ray near edge structure spectroscopy (μXANES) and x-ray diffraction (μXRD). This should facilitate mineralogical surveys and efficient searches for rare minerals, such as Ca, Ti-rich CAI-like materials. We performed our analysis of Stardust particles using keystones at beam line 10.3.2 of the Advanced Light Source at Lawrence Berkeley National Lab.[1] The μXANES capability of the beam line provides an excellent keystone survey technique to spot potentially interesting particles from the diverse material typically present in a keystone because it is able to rapidly identify minerals based on their chemical environment. Individual sub-micron particles such as those found in comet Wild 2 do not always yield useful diffraction data due to random crystal orientation and their small size. Furthermore, while electron microscopy can extract diffraction data from even the finest of minerals, it cannot do so rapidly (dozens of grains/day) as the preparation techniques are the rate limiting step. Therefore, when dealing with Wild 2 samples, XANES provides the powerful combination of mineralogical identification as well as high counting statistics and is very useful as a tool for comparing Wild-2 mineralogy against meteorite classes. Methods Each Stardust XANES spectrum was compared against a linear superposition of XANES spectra from known mineralogical standards. A fit therefore yields a percentage composition of several known minerals to achieve a minimum χ fit. To obtain valid results it is necessary to have a library of XANES spectra on hand for every mineral suspected to exist in the sample. With a large standards database it is possible to make very exact mineralogical identifications in a very short time. By measuring spots in the keystone near the track, it is also possible to remove the XANES contribution from contaminants in the aerogel. Many minerals require several XANES spectra to describe them as a consequence of optical anisotropy arising from the point group of the crystal. For example, diopside can have different signatures depending on the physical orientation of the crystal. See figure 1. Luckily, any crystal can be described using a linear superposition of at most 6 basis XANES spectra. [2]

read more

Content maybe subject to copyright    Report

References
More filters
Journal ArticleDOI

Anisotropic x-ray absorption in layered compounds

TL;DR: In this paper, a study of anisotropy effects in x-ray absorption in the layered compounds of layered compounds was presented, and the theoretical expression for the EXAFS anisotropic at the edges was explicitly displayed.
Related Papers (5)

Stardust Interstellar Preliminary Examination XI: Identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector

Rhonda M. Stroud, +68 more