scispace - formally typeset
Journal ArticleDOI

Modified Newtonian dynamics as an alternative to dark matter

Robert Sanders, +1 more
- 30 Apr 2002 - 
- Vol. 40, Iss: 1, pp 263-317
Reads0
Chats0
TLDR
Modified Newtonian dynamics (MOND) is an empirically motivated modification of Newtonian gravity or inertia suggested by Milgrom as an alternative to cosmic dark matter as mentioned in this paper.
Abstract
▪ Abstract Modified Newtonian dynamics (MOND) is an empirically motivated modification of Newtonian gravity or inertia suggested by Milgrom as an alternative to cosmic dark matter. The basic idea is that at accelerations below ao ≈ 10−8 cm/s2 ≈ cHo/6 the effective gravitational attraction approaches , where gn is the usual Newtonian acceleration. This simple algorithm yields flat rotation curves for spiral galaxies and a mass-rotation velocity relation of the form M ∝ V4 that forms the basis for the observed luminosity–rotation velocity relation—the Tully-Fisher law. We review the phenomenological success of MOND on scales ranging from dwarf spheroidal galaxies to superclusters and demonstrate that the evidence for dark matter can be equally well interpreted as evidence for MOND. We discuss the possible physical basis for an acceleration-based modification of Newtonian dynamics as well as the extention of MOND to cosmology and structure formation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Modified Gravity and Cosmology

TL;DR: A comprehensive survey of recent work on modified theories of gravity and their cosmological consequences can be found in this article, where the authors provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a selfcontained, comprehensive and up-to-date introduction to the subject as a whole.
Journal ArticleDOI

Observational Evidence of Active Galactic Nuclei Feedback

TL;DR: In this article, it was shown that the radiative or quasar mode of feedback can account for the observed proportionality between the central black hole and the host galaxy mass, which can lead to ejection or heating of the gas.
Journal ArticleDOI

Relativistic gravitation theory for the modified Newtonian dynamics paradigm

TL;DR: The relativistic modified Newtonian dynamics (MOND) paradigm of Milgrom can boast of a number of successful predictions regarding galactic dynamics; these are made without the assumption that dark matter plays a significant role as mentioned in this paper.
Journal ArticleDOI

Cosmology and Fundamental Physics with the Euclid Satellite

Luca Amendola, +81 more
TL;DR: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program as discussed by the authors, which will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shift of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky.
Journal ArticleDOI

Beyond the cosmological standard model

TL;DR: A review of the state of the art in the field of modified gravity can be found in this article, where the authors identify the guiding principles for rigorous and consistent modifications of the standard model, and discuss the prospects for empirical tests.
References
More filters
Journal ArticleDOI

The Structure of cold dark matter halos

TL;DR: In this article, high-resolution N-body simulations show that the density profiles of dark matter halos formed in the standard CDM cosmogony can be fit accurately by scaling a simple universal profile.
Journal ArticleDOI

Mach's principle and a relativistic theory of gravitation

TL;DR: In this paper, the role of Mach's principle in physics is discussed in relation to the equivalence principle and the difficulties encountered in attempting to incorporate Mach's principles into general relativity are discussed.
Journal ArticleDOI

Notes on black-hole evaporation

TL;DR: In this paper, the authors examined various aspects of black-hole evaporation and proposed a technique for replacing the collapse by boundary conditions on the past horizon, which retains the essential features of the collapse while eliminating some of the difficulties.
Related Papers (5)