scispace - formally typeset
Open AccessJournal ArticleDOI

MXene-Graphene Field-Effect Transistor Sensing of Influenza Virus and SARS-CoV-2

TLDR
In this paper, an MXene-graphene field effect transistor (FET) sensor for both influenza virus and 2019-nCoV sensing was developed and characterized, which combines the high chemical sensitivity of MXene and the continuity of large-area high-quality graphene to form an ultra-sensitive virus-sensing transduction material (VSTM).
Abstract
An MXene-graphene field-effect transistor (FET) sensor for both influenza virus and 2019-nCoV sensing was developed and characterized. The developed sensor combines the high chemical sensitivity of MXene and the continuity of large-area high-quality graphene to form an ultra-sensitive virus-sensing transduction material (VSTM). Through polymer linking, we are able to utilize antibody-antigen binding to achieve electrochemical signal transduction when viruses are deposited onto the VSTM surface. The MXene-graphene VSTM was integrated into a microfluidic channel that can directly receive viruses in solution. The developed sensor was tested with various concentrations of antigens from two viruses: inactivated influenza A (H1N1) HA virus ranging from 125 to 250,000 copies/mL and a recombinant 2019-nCoV spike protein ranging from 1 fg/mL to 10 pg/mL. The average response time was about ∼50 ms, which is significantly faster than the existing real-time reverse transcription-polymerase chain reaction method (>3 h). The low limit of detection (125 copies/mL for the influenza virus and 1 fg/mL for the recombinant 2019-nCoV spike protein) has demonstrated the sensitivity of the MXene-graphene VSTM on the FET platform to virus sensing. Especially, the high signal-to-viral load ratio (∼10% change in source-drain current and gate voltage) also demonstrates the ultra-sensitivity of the developed MXene-graphene FET sensor. In addition, the specificity of the sensor was also demonstrated by depositing the inactivated influenza A (H1N1) HA virus and the recombinant 2019-nCoV spike protein onto microfluidic channels with opposite antibodies, producing signal differences that are about 10 times lower. Thus, we have successfully fabricated a relatively low-cost, ultrasensitive, fast-responding, and specific inactivated influenza A (H1N1) and 2019-nCoV sensor with the MXene-graphene VSTM.

read more

Citations
More filters

The development of integrated circuits based on two-dimensional materials

TL;DR: In this article, the development of integrated circuits based on 2D layered materials is examined and a roadmap for the future development is proposed to address the key challenges that need to be addressed to deliver highly scaled circuits.
Journal ArticleDOI

Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein

TL;DR: In this article, an electrochemical sensor based on a molecularly imprinted polymer synthetic receptor for the quantitative detection of SARS-CoV-2 spike protein subunit S1 (ncovS1), by harnessing the covalent interaction between 1,2-diols of the highly glycosylated protein and the boronic acid group of 3-aminophenylboronic acid (APBA), was presented.
Journal ArticleDOI

Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein

TL;DR: In this paper , an electrochemical sensor based on a molecularly imprinted polymer synthetic receptor for the quantitative detection of SARS-CoV-2 spike protein subunit S1 (ncovS1), by harnessing the covalent interaction between 1,2-diols of the highly glycosylated protein and the boronic acid group of 3-aminophenylboronic acid (APBA), was presented.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

2D metal carbides and nitrides (MXenes) for energy storage

TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Journal ArticleDOI

25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials

TL;DR: In this article, a new family of two-dimensional early transition metal carbides and carbonitrides, called MXenes, was discovered and a detailed outlook for future research on MXenes is also presented.
Journal ArticleDOI

Fabrication of microfluidic systems in poly(dimethylsiloxane)

TL;DR: Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes to devices that handle aqueous solutions.
Journal ArticleDOI

New insights into the structure and reduction of graphite oxide

TL;DR: This work has devised a complete reduction process through chemical conversion by sodium borohydride and sulfuric acid treatment, followed by thermal annealing that is particularly effective in the restoration of the π-conjugated structure, and leads to highly soluble and conductive graphene materials.
Related Papers (5)