scispace - formally typeset
Journal ArticleDOI

Nonviral Vectors for Gene Delivery

Meredith A. Mintzer, +1 more
- 01 Feb 2009 - 
- Vol. 109, Iss: 2, pp 259-302
TLDR
Two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells.
Abstract
The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (~200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less

read more

Citations
More filters
Journal ArticleDOI

Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary complexes: a novel strategy for magnetofection.

TL;DR: Polyamidoamine dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI (25 kDa) ternary complexes were used for the magnetofection of mammalian cells and demonstrated that the magnetic field quickly gathered the magnetoplexes to the surface of target cells and enhanced the uptake of the ternaries by the cells.
Journal ArticleDOI

Synthesis and delivery activity of new cationic cholesteryl glucosides.

TL;DR: Cationic liposomes were able to deliver siRNA into the cells, and the liposomal formulation 7d/DOPE provided the most pronounced down-regulation of EGFP expression both in the presence and in the absence of serum.
Journal ArticleDOI

Progress and Outlook of Inorganic Nanoparticles for Delivery of Nucleic Acid Sequences Related to Orthopedic Pathologies: A Review

TL;DR: This review provides an overview of the role each area plays in orthopedic gene therapy as well as possible future directions for the field.
Journal ArticleDOI

A review of the tortuous path of nonviral gene delivery and recent progress.

TL;DR: In this paper, a review of non-viral gene delivery systems is presented, focusing on the current evolving state of nonviral delivery systems and their future perspectives, and emphasizing the recent advancements aimed at enhancing the current nonvirus approaches.
Journal ArticleDOI

Non-Viral Vectors for Gene Delivery

TL;DR: The various physical and chemical methods for gene transfer in vitro and in vivo, including tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors.
References
More filters
Journal ArticleDOI

A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine

TL;DR: Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices because its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysOSomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.
Journal ArticleDOI

Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure

TL;DR: Depending upon the cell line, lipofection is from 5- to greater than 100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.
Journal ArticleDOI

Direct gene transfer into mouse muscle in vivo.

TL;DR: RNA and DNA expression vectors containing genes for chloramphenicol acetyltransferase, luciferase, and beta-galactosidase were separately injected into mouse skeletal muscle in vivo and expression was comparable to that obtained from fibroblasts transfected in vitro under optimal conditions.
Journal ArticleDOI

A new class of polymers: Starburst-dendritic macromolecules

TL;DR: Starburst polymers as mentioned in this paper are a class of topological macromolecules which are derived from classical monomers/oligomers by their extraordinary symmetry, high branching and maximized terminal functionality density.
Related Papers (5)