scispace - formally typeset
Journal ArticleDOI

Nonviral Vectors for Gene Delivery

Meredith A. Mintzer, +1 more
- 01 Feb 2009 - 
- Vol. 109, Iss: 2, pp 259-302
TLDR
Two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells.
Abstract
The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (~200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less

read more

Citations
More filters
Journal ArticleDOI

Non-viral vectors for gene-based therapy

TL;DR: The biological barriers to gene delivery in vivo are introduced and recent advances in material sciences, nanotechnology and nucleic acid chemistry that have yielded promising non-viral delivery systems are discussed, some of which are currently undergoing testing in clinical trials.
Journal ArticleDOI

Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology.

TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Journal ArticleDOI

Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy

TL;DR: This work presents a new generation of high-performance liquid chromatography platforms for selective separation of Na6(CO3) from Na4(SO4) through Na2SO4 and shows real-world applications in drug discovery and treatment of central nervous system disorders.
Journal ArticleDOI

Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications ☆

TL;DR: This review gives a brief overview about some types of stimuli-responsive nanocarriers with the main focus on organic polymer-based systems.
Journal ArticleDOI

Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery

TL;DR: The latest research on the pathways of entry into live mammalian and plant cells together with intracellular trafficking are described, and the current research progress on the biocompatibility of this material in vitro and in vivo is discussed.
References
More filters
Journal ArticleDOI

TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors

TL;DR: It is demonstrated that relatively large drug carriers, such as 200-nm liposomes, can also be delivered into cells by TAT peptide attached to the liposome surface, confirming the energy-independent character of this process.
Journal ArticleDOI

A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent.

TL;DR: The G2-PAMAM-capped MSN material (G2-MSN) was used to complex with a plasmid DNA (pEGFP-C1) that encodes for an enhanced green fluorescence protein that renders the possibility to serve as a universal transmembrane carrier for intracellular drug delivery and imaging applications.
Journal ArticleDOI

The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes

TL;DR: At the concentrations studied, these polymers interact electrostatically with DNA forming a unit structure with toroidal morphology; the extent of aggregation of the unit structures in solution depends upon the characteristics of the individual polymer.
Journal ArticleDOI

Transferrin-polycation conjugates as carriers for DNA uptake into cells

TL;DR: A high-efficiency nucleic acid delivery system that uses receptor-mediated endocytosis to carry DNA macromolecules into cells by conjugating the iron-transport protein transferrin to polycations that bind nucleic acids is developed.
Journal ArticleDOI

Functionalization of Carbon Nanotubes via Cleavable Disulfide Bonds for Efficient Intracellular Delivery of siRNA and Potent Gene Silencing

TL;DR: The novel functionalization of SWNTs with cleavable bonds is highly promising for a wide range of applications including gene and protein therapy.
Related Papers (5)