scispace - formally typeset
Journal ArticleDOI

Nonviral Vectors for Gene Delivery

Meredith A. Mintzer, +1 more
- 01 Feb 2009 - 
- Vol. 109, Iss: 2, pp 259-302
TLDR
Two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells.
Abstract
The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (~200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less

read more

Citations
More filters
Journal ArticleDOI

Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer

TL;DR: The results reinforce that the autofluorescent GON-AN-FA is able to target cancer cells via recognition of the ligand FA and the receptor FRα and represents a significant advance for the targeted imaging and early diagnosis of cancer.
Journal ArticleDOI

Modular Synthesis of Folate Conjugated Ternary Copolymers: Polyethylenimine-graft-Polycaprolactone-block-Poly(ethylene glycol)-Folate for Targeted Gene Delivery

TL;DR: Novel folate-conjugated ternary copolymers based on polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) (PEI-g-PCL-b-PEG-Fol) is addressed as targeted gene delivery system using a modular synthesis approach and enhanced cellular uptake could be inhibited by free folic acid and did not occur in FR-negative A549 cells, demonstrating specific cell uptake by FR
Journal ArticleDOI

PEGylated Adenoviruses: From Mice to Monkeys

TL;DR: The history of PEGylation and PEG chemistry is summarized and the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes is highlighted.
Journal ArticleDOI

Morphology prediction of block copolymers for drug delivery by mesoscale simulations

TL;DR: In this article, the authors report the results of a complete study on the self-assembly of (D-L)-PLA/PEO di/triblock copolymers in aqueous environment and in the presence of a model drug based on a molecular simulation recipe.
References
More filters
Journal ArticleDOI

A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine

TL;DR: Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices because its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysOSomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.
Journal ArticleDOI

Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure

TL;DR: Depending upon the cell line, lipofection is from 5- to greater than 100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.
Journal ArticleDOI

Direct gene transfer into mouse muscle in vivo.

TL;DR: RNA and DNA expression vectors containing genes for chloramphenicol acetyltransferase, luciferase, and beta-galactosidase were separately injected into mouse skeletal muscle in vivo and expression was comparable to that obtained from fibroblasts transfected in vitro under optimal conditions.
Journal ArticleDOI

A new class of polymers: Starburst-dendritic macromolecules

TL;DR: Starburst polymers as mentioned in this paper are a class of topological macromolecules which are derived from classical monomers/oligomers by their extraordinary symmetry, high branching and maximized terminal functionality density.
Related Papers (5)