scispace - formally typeset
Open AccessJournal ArticleDOI

Observation of a kilogram-scale oscillator near its quantum ground state

B. P. Abbott, +454 more
- 16 Jul 2009 - 
- Vol. 11, Iss: 7, pp 073032
Reads0
Chats0
TLDR
In this paper, the resonant frequency of a 2.7 kg pendulum mode was dynamically shifted to lie within this optimal band, where its effective temperature falls as low as 1.4 μK and its occupation number reaches about 200 quanta.
Abstract
We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system—an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10−18 m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 μK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cavity Optomechanics

TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Journal ArticleDOI

Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

J. Aasi, +748 more
- 01 Aug 2013 - 
TL;DR: In this article, the authors inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz.
Journal ArticleDOI

A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity

TL;DR: In this article, a single-crystal silicon system that offers a fractional frequency instability of 1 × 10−16 at short timescales and supports a laser linewidth of less than 40 mHz at 1.5 µm is presented.
Journal ArticleDOI

Squeezed light from a silicon micromechanical resonator

TL;DR: The continuous position measurement of a solid-state, optomechanical system fabricated from a silicon microchip and comprising a micromechanical resonator coupled to a nanophotonic cavity is described, observing squeezing of the reflected light’s fluctuation spectrum at a level 4.5 ± 0.2 per cent below that of vacuum noise.
References
More filters
Journal ArticleDOI

LIGO: The Laser Interferometer Gravitational-Wave Observatory.

TL;DR: The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy.
Journal ArticleDOI

Cavity Optomechanics: Back-Action at the Mesoscale

TL;DR: Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena.
Journal ArticleDOI

Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane.

TL;DR: A cavity which is detuned by the motion of a 50-nm-thick dielectric membrane placed between two macroscopic, rigid, high-finesse mirrors is demonstrated, which segregates optical and mechanical functionality to physically distinct structures and avoids compromising either.
Journal ArticleDOI

Radiation-pressure cooling and optomechanical instability of a micromirror

TL;DR: An experiment where a micromechanical resonator is used as a mirror in a very high-finesse optical cavity, and its displacements are monitored with unprecedented sensitivity, and a radiation-pressure-induced instability of the resonators is observed.
Related Papers (5)