scispace - formally typeset
D

D. Simakov

Researcher at Max Planck Society

Publications -  11
Citations -  12156

D. Simakov is an academic researcher from Max Planck Society. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 10, co-authored 11 publications receiving 10230 citations. Previous affiliations of D. Simakov include Leibniz University of Hanover.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

J. Aasi, +748 more
- 01 Aug 2013 - 
TL;DR: In this article, the authors inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz.
Journal ArticleDOI

Astrophysical implications of the binary black hole merger gw150914

B. P. Abbott, +964 more
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Journal ArticleDOI

GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

B. P. Abbott, +958 more
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.
Journal ArticleDOI

The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914

B. P. Abbott, +988 more
Abstract: A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false alarm rate (FAR) of < 4.9 × 10^(−6) yr^(−1), yielding a p-value for GW150914 of < 2 × 10^(−7). Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses (m_1, m_2) = (36^(+5)_(−4), 29^(+4)_(−4)) M_⊙ at redshift z = 0.09^(+0.03)_(−0.04) (median and 90\% credible range). Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the Universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between 2--53 Gpc^(−3) yr^(−1) (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from 13--600 Gpc^(−3) yr^(−1) depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range 2--600 Gpc^(−3) yr^(−1).