scispace - formally typeset
C

C. Bogan

Researcher at Albert Einstein Institution

Publications -  77
Citations -  24069

C. Bogan is an academic researcher from Albert Einstein Institution. The author has contributed to research in topics: LIGO & Gravitational wave. The author has an hindex of 51, co-authored 77 publications receiving 20568 citations. Previous affiliations of C. Bogan include Leibniz University of Hanover & Max Planck Society.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

Characterization of the LIGO detectors during their sixth science run

J. Aasi, +887 more
TL;DR: In this paper, the authors review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of the detectors to a variety of astrophysical sources.
Journal ArticleDOI

Binary Black Hole Mergers in the First Advanced LIGO Observing Run

B. P. Abbott, +981 more
- 21 Oct 2016 - 
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Journal ArticleDOI

Binary Black Hole Mergers in the first Advanced LIGO Observing Run

B. P. Abbott, +972 more
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Journal ArticleDOI

Properties of the Binary Black Hole Merger GW150914

B. P. Abbott, +987 more
TL;DR: The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity.