scispace - formally typeset
Open AccessJournal ArticleDOI

Observation of a large-gap topological-insulator class with a single Dirac cone on the surface

Reads0
Chats0
TLDR
In this paper, an angle-resolved photo-emission spectroscopy study was conducted to reveal the first observation of a topological state of matter featuring a single surface Dirac cone realized in the naturally occurring Bi-2Se-3 class of materials.
Abstract
Recent experiments and theories have suggested that strong spin–orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator, which can show macroscopic quantum-entanglement effects. Such systems feature two-dimensional surface states whose electrodynamic properties are described not by the conventional Maxwell equations but rather by an attached axion field, originally proposed to describe interacting quarks. It has been proposed that a topological insulator with a single Dirac cone interfaced with a superconductor can form the most elementary unit for performing fault-tolerant quantum computation. Here we present an angle-resolved photoemission spectroscopy study that reveals the first observation of such a topological state of matter featuring a single surface Dirac cone realized in the naturally occurring Bi_2Se_3 class of materials. Our results, supported by our theoretical calculations, demonstrate that undoped Bi_2Se_3 can serve as the parent matrix compound for the long-sought topological device where in-plane carrier transport would have a purely quantum topological origin. Our study further suggests that the undoped compound reached via n-to-p doping should show topological transport phenomena even at room temperature.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The bulk-corner correspondence of time-reversal symmetric insulators

Abstract: The topology of insulators is usually revealed through the presence of gapless boundary modes: this is the so-called bulk-boundary correspondence. However, the many-body wavefunction of a crystalline insulator is endowed with additional topological properties that do not yield surface spectral features, but manifest themselves as (fractional) quantized electronic charges localized at the crystal boundaries. Here, we formulate such bulk-corner correspondence for the physical relevant case of materials with time-reversal symmetry and spin-orbit coupling. To do so we develop partial real-space invariants that can be neither expressed in terms of Berry phases nor using symmetry-based indicators. These previously unknown crystalline invariants govern the (fractional) quantized corner charges both of isolated material structures and of heterostructures without gapless interface modes. We also show that the partial real-space invariants are able to detect all time-reversal symmetric topological phases of the recently discovered fragile type.
Journal ArticleDOI

A brief review of Bi2Se3 based topological insulator: From fundamentals to applications

TL;DR: A review on the meticulous studies of Bi2Se3 is presented where different synthesis techniques; crystal structures; various physical properties and modern day applications were taken into concern as discussed by the authors, where the transport properties of its single crystals are renowned, thin films are also causing equally sensational detections and nanoparticles are also being used in some excellent innovations.
Journal ArticleDOI

Uniaxial-strain Control of Nematic Superconductivity in Sr$_{x}$Bi$_2$Se$_3$

TL;DR: In this paper, an external symmetry-breaking field was used to determine the sign and strength of coupling to the lattice, and control of the nematic orientation of the superconductivity of Sr$_x$Bi$_2$Se$_3$, through externally-applied uniaxial stress.
Journal ArticleDOI

Group 14 element-based non-centrosymmetric quantum spin Hall insulators with large bulk gap

TL;DR: In this paper, a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2-GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications.
Journal ArticleDOI

Staggered grid leap-frog scheme for the (2+1)D Dirac equation

TL;DR: Several numerical examples, ranging from generic to specific to textured topological insulator surfaces, demonstrate the properties of the scheme which can handle general electromagnetic potential landscapes.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Quantum Spin Hall Insulator State in HgTe Quantum Wells

TL;DR: The quantum phase transition at the critical thickness, d = 6.3 nanometers, was independently determined from the magnetic field–induced insulator-to-metal transition, providing experimental evidence of the quantum spin Hall effect.
Journal ArticleDOI

Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator

TL;DR: It is shown that linear junctions between superconductors mediated by the topological insulator form a nonchiral one-dimensional wire for Majorana fermions, and that circuits formed from these junctions provide a method for creating, manipulating, and fusing Majorana bound states.
Related Papers (5)