scispace - formally typeset
Open AccessJournal ArticleDOI

Observation of a large-gap topological-insulator class with a single Dirac cone on the surface

Reads0
Chats0
TLDR
In this paper, an angle-resolved photo-emission spectroscopy study was conducted to reveal the first observation of a topological state of matter featuring a single surface Dirac cone realized in the naturally occurring Bi-2Se-3 class of materials.
Abstract
Recent experiments and theories have suggested that strong spin–orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator, which can show macroscopic quantum-entanglement effects. Such systems feature two-dimensional surface states whose electrodynamic properties are described not by the conventional Maxwell equations but rather by an attached axion field, originally proposed to describe interacting quarks. It has been proposed that a topological insulator with a single Dirac cone interfaced with a superconductor can form the most elementary unit for performing fault-tolerant quantum computation. Here we present an angle-resolved photoemission spectroscopy study that reveals the first observation of such a topological state of matter featuring a single surface Dirac cone realized in the naturally occurring Bi_2Se_3 class of materials. Our results, supported by our theoretical calculations, demonstrate that undoped Bi_2Se_3 can serve as the parent matrix compound for the long-sought topological device where in-plane carrier transport would have a purely quantum topological origin. Our study further suggests that the undoped compound reached via n-to-p doping should show topological transport phenomena even at room temperature.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Stabilized Li3N for efficient battery cathode prelithiation

TL;DR: Li3N can deliver more than 10 times the theoretical capacity of existing cathode materials and can serve as an excellent cathode prelithiation additive to offset the initial lithium loss in lithium-ion batteries.
Journal ArticleDOI

Classification of topological insulators and superconductors in the presence of reflection symmetry

TL;DR: In this paper, a topological classification of insulators and superconductors in the presence of both (nonspatial) discrete symmetries in the Altland-Zirnbauer classification and spatial reflection symmetry in any spatial dimensions is discussed.
Journal ArticleDOI

Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit

TL;DR: In this paper, an angle-resolved photoemission spectroscopy was performed on Bi2Se3 films of various thicknesses grown by molecular beam epitaxy and the energy gap opening was clearly seen when the thickness is below six quintuple layers.
Journal ArticleDOI

Pressure-induced superconductivity in topological parent compound Bi2Te3

TL;DR: The results suggested that topological superconductivity can be realized in Bi2Te3 due to the proximity effect between superconducting bulk states and Dirac-type surface states.

Broadband Photodetectors Based on GrapheneBi 2 Te 3 Heterostructure

TL;DR: The results show that the graphene-Bi2Te3 photodetector has much higher photoresponsivity (35 AW(-1) at a wavelength of 532 nm) and higher sensitivity (photoconductive gain up to 83), as compared to the pure monolayer graphene-based devices.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Quantum Spin Hall Insulator State in HgTe Quantum Wells

TL;DR: The quantum phase transition at the critical thickness, d = 6.3 nanometers, was independently determined from the magnetic field–induced insulator-to-metal transition, providing experimental evidence of the quantum spin Hall effect.
Journal ArticleDOI

Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator

TL;DR: It is shown that linear junctions between superconductors mediated by the topological insulator form a nonchiral one-dimensional wire for Majorana fermions, and that circuits formed from these junctions provide a method for creating, manipulating, and fusing Majorana bound states.
Related Papers (5)