scispace - formally typeset
Journal ArticleDOI

Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary Organic Aerosol

Reads0
Chats0
TLDR
In this paper, a high-resolution time-of-flight chemical ionization mass spectrometer using iodide reagent ion chemistry detected more than 100 gas-phase compounds from the emissions of 30 different controlled burns during the 2016 Fire Influence on Regional and Global Environments Experiment (FIREX) at the Fire Science Laboratory.
Abstract
We investigated the gas-phase chemical composition of biomass burning (BB) emissions and their role in aqueous secondary organic aerosol (aqSOA) formation through photochemical cloud processing. A high-resolution time-of-flight chemical ionization mass spectrometer using iodide reagent ion chemistry detected more than 100 gas-phase compounds from the emissions of 30 different controlled burns during the 2016 Fire Influence on Regional and Global Environments Experiment (FIREX) at the Fire Science Laboratory. Compounds likely to partition to cloudwater were selected based on high atomic oxygen-to-carbon ratio and abundance. Water solubility was confirmed by detection of these compounds in water after mist chamber collection during controlled burns and analysis using ion chromatography and electrospray ionization interfaced to high-resolution time-of-flight mass spectrometry. Known precursors of aqSOA were found in the primary gaseous BB emissions (e.g., phenols, acetate, and pyruvate). Aqueous OH oxidation of the complex biomass burning mixtures led to rapid depletion of many compounds (e.g., catechol, levoglucosan, methoxyphenol) and formation of others (e.g., oxalate, malonate, mesoxalate). After 150 min of oxidation (approximatively 1 day of cloud processing), oxalate accounted for 13-16% of total dissolved organic carbon. Formation of known SOA components suggests that cloud processing of primary BB emissions forms SOA.

read more

Citations
More filters

Secondary Organic Aerosol Formation from Anthropogenic Air Pollution: Rapid and Higher than Expected

TL;DR: This paper showed that reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise, and a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products.
Journal ArticleDOI

The changing risk and burden of wildfire in the United States.

TL;DR: In this article, a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations was developed to estimate that wildfires have accounted for up to 25% of PM2.5 (particulate matter with diameter).
Journal ArticleDOI

Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol

TL;DR: In this article, the authors explored the molecular composition of light-absorbing organic aerosol, or brown carbon (BrC), sampled at the Missoula Fire Sciences laboratory as a part of the FIREX Fall 2016 lab intensive.
Journal ArticleDOI

Relationships between Particulate Matter, Ozone, and Nitrogen Oxides during Urban Smoke Events in the Western US.

TL;DR: Urban ozone (O3) pollution is influenced by the transport of wildfire smoke but observed impacts are highly variable, and the rate of increase of morning O3 is higher and NO/NO2 ratios are lower on smoke-influenced days, which could result from additional atmospheric oxidants in smoke.
References
More filters
Journal ArticleDOI

Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution

TL;DR: In this article, the rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes, and the corresponding radical anions, ⋅O− and eaq−, have been critically pulse radiolysis, flash photolysis and other methods.
Journal ArticleDOI

Evolution of Organic Aerosols in the Atmosphere

Jose L. Jimenez, +66 more
- 11 Dec 2009 - 
TL;DR: A unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state is presented, which can serve as a basis for improving parameterizations in regional and global models.
Journal ArticleDOI

Organic aerosol and global climate modelling: a review

TL;DR: In this article, the authors reviewed existing knowledge with regard to organic aerosol (OA) of importance for global climate modelling and defined critical gaps needed to reduce the involved uncertainties, and synthesized the information to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosols.
Related Papers (5)