scispace - formally typeset
Open AccessJournal ArticleDOI

Phylogenomics Reveals the Evolutionary Timing and Pattern of Butterflies and Moths

Reads0
Chats0
TLDR
It is demonstrated that the most recent common ancestor of Lepidoptera is considerably older than previously hypothesized, and it is shown that multiple lineages of moths independently evolved hearing organs well before the origin of bats, rejecting the hypothesis that lepidopteran hearing organs arose in response to these predators.
Abstract
Butterflies and moths (Lepidoptera) are one of the major superradiations of insects, comprising nearly 160,000 described extant species. As herbivores, pollinators, and prey, Lepidoptera play a fundamental role in almost every terrestrial ecosystem. Lepidoptera are also indicators of environmental change and serve as models for research on mimicry and genetics. They have been central to the development of coevolutionary hypotheses, such as butterflies with flowering plants and moths' evolutionary arms race with echolocating bats. However, these hypotheses have not been rigorously tested, because a robust lepidopteran phylogeny and timing of evolutionary novelties are lacking. To address these issues, we inferred a comprehensive phylogeny of Lepidoptera, using the largest dataset assembled for the order (2,098 orthologous protein-coding genes from transcriptomes of 186 species, representing nearly all superfamilies), and dated it with carefully evaluated synapomorphy-based fossils. The oldest members of the Lepidoptera crown group appeared in the Late Carboniferous (∼300 Ma) and fed on nonvascular land plants. Lepidoptera evolved the tube-like proboscis in the Middle Triassic (∼241 Ma), which allowed them to acquire nectar from flowering plants. This morphological innovation, along with other traits, likely promoted the extraordinary diversification of superfamily-level lepidopteran crown groups. The ancestor of butterflies was likely nocturnal, and our results indicate that butterflies became day-flying in the Late Cretaceous (∼98 Ma). Moth hearing organs arose multiple times before the evolutionary arms race between moths and bats, perhaps initially detecting a wide range of sound frequencies before being co-opted to specifically detect bat sonar. Our study provides an essential framework for future comparative studies on butterfly and moth evolution.

read more

Citations
More filters
Journal ArticleDOI

A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous

TL;DR: In this paper, a detailed assessment of global macrolepidopteran population trends including numerous cases of both region-wide and local losses and studies that report no declines is presented.
Journal ArticleDOI

Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera

TL;DR: A large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers finds little evidence that the evolution of hearing andSound producing organs increased diversification rates in those lineages with known acoustic communication.
Journal ArticleDOI

The Angiosperm Terrestrial Revolution and the origins of modern biodiversity

TL;DR: Angiosperms triggered a macroecological revolution on land and drove modern biodiversity in a secular, prolonged shift to new, high levels, a series of processes we name here the Angiosperm Terrestrial Revolution as discussed by the authors.

Phylogenomics Resolves The Timing And Pattern Of Insect Evolution: Supplementary File Archives.

TL;DR: A phylogenetic analysis of protein-coding genes from all major insect orders and close relatives was performed by Misof et al. as discussed by the authors, who used this resolved phylogenetic tree together with fossil analysis to date the origin of insects to ~479 million years ago and to resolve longcontroversial subjects in insect phylogeny.
Journal ArticleDOI

Odorant Receptors for Detecting Flowering Plant Cues Are Functionally Conserved across Moths and Butterflies.

TL;DR: Beyond providing a rich empirical resource for delineating the precise functions of H. armigera ORs, the results enable a comparative analysis of insect ORs that have apparently facilitated and currently sustain the intimate adaptations and ecological interactions among nectar feeding insects and flowering plants.
References
More filters
Journal ArticleDOI

MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

TL;DR: This version of MAFFT has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update.
Journal ArticleDOI

RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.

TL;DR: This work presents some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees.
Journal ArticleDOI

New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0

TL;DR: A new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves and a new test to assess the support of the data for internal branches of a phylogeny are introduced.
Journal ArticleDOI

IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies

TL;DR: It is shown that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented and found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space.
Journal ArticleDOI

BEAST: Bayesian evolutionary analysis by sampling trees

TL;DR: BEAST is a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree that provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions.
Related Papers (5)