scispace - formally typeset
Journal ArticleDOI

Physical and chemical tuning of two-dimensional transition metal dichalcogenides

TLDR
With the flexible tuning of properties 2D TMDs become attractive candidates for a variety of applications including electronics, optoelectronics, catalysis, and energy.
Abstract
The development of two-dimensional (2D) materials has been experiencing a renaissance since the adventure of graphene. Layered transition metal dichalcogenides (TMDs) are now playing increasingly important roles in both fundamental studies and technological applications due to their wide range of material properties from semiconductors, metals to superconductors. However, a material with fixed properties may not exhibit versatile applications. Due to the unique crystal structures, the physical and chemical properties of 2D TMDs can be effectively tuned through different strategies such as reducing dimensions, intercalation, heterostructure, alloying, and gating. With the flexible tuning of properties 2D TMDs become attractive candidates for a variety of applications including electronics, optoelectronics, catalysis, and energy.

read more

Citations
More filters
Journal ArticleDOI

Catalysis with two-dimensional materials and their heterostructures

TL;DR: Recent advances in the use of graphene and other 2D materials in catalytic applications are reviewed, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals).
Journal ArticleDOI

Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide

TL;DR: Several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction.
Journal ArticleDOI

2D Transition‐Metal‐Dichalcogenide‐Nanosheet‐Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions

TL;DR: Recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed.
Journal ArticleDOI

Mixed-dimensional van der Waals heterostructures

TL;DR: In this paper, a survey of mixed-dimensional van der Waals (vdw) heterostructures is presented, where 2D materials with non-2D materials adhere primarily through non-covalent interactions.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Single-layer MoS2 transistors

TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Related Papers (5)