scispace - formally typeset
Open AccessJournal ArticleDOI

Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19)

TLDR
The humoral response to SARS-CoV-2 can aid in the diagnosis of COVID-19, including subclinical cases, and the detection efficiency by IgM ELISA is higher than that of qPCR after 5.5 days of symptom onset.
Abstract
Background The emergence of coronavirus disease 2019 (COVID-19) is a major healthcare threat. The current method of detection involves a quantitative polymerase chain reaction (qPCR)-based technique, which identifies the viral nucleic acids when present in sufficient quantity. False-negative results can be achieved and failure to quarantine the infected patient would be a major setback in containing the viral transmission. We aim to describe the time kinetics of various antibodies produced against the 2019 novel coronavirus (SARS-CoV-2) and evaluate the potential of antibody testing to diagnose COVID-19. Methods The host humoral response against SARS-CoV-2, including IgA, IgM, and IgG response, was examined by using an ELISA-based assay on the recombinant viral nucleocapsid protein. 208 plasma samples were collected from 82 confirmed and 58 probable cases (qPCR negative but with typical manifestation). The diagnostic value of IgM was evaluated in this cohort. Results The median duration of IgM and IgA antibody detection was 5 (IQR, 3-6) days, while IgG was detected 14 (IQR, 10-18) days after symptom onset, with a positive rate of 85.4%, 92.7%, and 77.9%, respectively. In confirmed and probable cases, the positive rates of IgM antibodies were 75.6% and 93.1%, respectively. The detection efficiency by IgM ELISA is higher than that of qPCR after 5.5 days of symptom onset. The positive detection rate is significantly increased (98.6%) when combining IgM ELISA assay with PCR for each patient compared with a single qPCR test (51.9%). Conclusions The humoral response to SARS-CoV-2 can aid in the diagnosis of COVID-19, including subclinical cases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review.

TL;DR: This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19, the novel severe acute respiratory syndrome coronavirus 2 pandemic that has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease.
Journal ArticleDOI

Characteristics of SARS-CoV-2 and COVID-19

TL;DR: The basic virology of SARS-CoV-2 is described, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses.
Journal ArticleDOI

Interpreting Diagnostic Tests for SARS-CoV-2.

TL;DR: How to interpret 2 types of diagnostic tests commonly in use for SARS-CoV-2 infections—reverse transcriptase–polymerase chain reaction (RT-PCR) and IgM and IgG enzyme-linked immunosorbent assay (ELISA)—and how the results may vary over time is described.
Journal ArticleDOI

Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure.

TL;DR: Care must be taken in interpreting RT-PCR tests for SARS-CoV-2 infection—particularly early in the course of infection—when using these results as a basis for removing precautions intended to prevent onward transmission.
References
More filters
Journal ArticleDOI

A Novel Coronavirus from Patients with Pneumonia in China, 2019.

TL;DR: Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily, which is the seventh member of the family of coronaviruses that infect humans.
Journal ArticleDOI

Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.

TL;DR: The epidemiological and clinical characteristics of novel coronavirus (2019-nCoV)-infected pneumonia in Wuhan, China, and hospital-associated transmission as the presumed mechanism of infection for affected health professionals and hospitalized patients are described.
Journal ArticleDOI

Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

TL;DR: Characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia, and further investigation is needed to explore the applicability of the Mu LBSTA scores in predicting the risk of mortality in 2019-nCoV infection.
Related Papers (5)