scispace - formally typeset
Journal ArticleDOI

Quantitative relations between interaction parameter, miscibility and function in organic solar cells

Reads0
Chats0
TLDR
This work establishes a quantitative ‘constant-kink-saturation’ relation between χaa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors.
Abstract
Although it is known that molecular interactions govern morphology formation and purity of mixed domains of conjugated polymer donors and small-molecule acceptors, and thus largely control the achievable performance of organic solar cells, quantifying interaction–function relations has remained elusive. Here, we first determine the temperature-dependent effective amorphous–amorphous interaction parameter, χaa(T), by mapping out the phase diagram of a model amorphous polymer:fullerene material system. We then establish a quantitative ‘constant-kink-saturation’ relation between χaa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors. Our experimental and computational data reveal that a high fill factor is obtained only when χaa is large enough to lead to strong phase separation. Our work outlines a basis for using various miscibility tests and future simulation methods that will significantly reduce or eliminate trial-and-error approaches to material synthesis and device fabrication of functional semiconducting blends and organic blends in general. This work reports a quantitative investigation of the interaction parameter and miscibility of donor and acceptor organic molecules and their relationship with the fill factor and photovoltaic performance of bulk-heterojunction organic solar cells.

read more

Citations
More filters

Fast parallel algorithms for short-range molecular dynamics

TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Journal ArticleDOI

Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages

TL;DR: This study demonstrates that finely tuning the OPV materials to reduce the bandgap-voltage offset has great potential for boosting the efficiency and unexpectedly obtain higher open-circuit voltages and achieve a record high PCE of 16.5% by chlorination.
Journal ArticleDOI

Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors

TL;DR: The field of non-fullerene organic solar cells has experienced rapid development during the past few years, mainly driven by the development of novel non-fullylerene acceptors and matching donor semiconductors.
Journal ArticleDOI

Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells

TL;DR: In this paper, a small molecule acceptor (SMA) with 3rd position branched alkyl chains was designed and synthesized to investigate the influence of alkyls on the properties and performance of the SMAs.
Journal ArticleDOI

A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.

TL;DR: A new benzodithiophene unit is developed and subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T, demonstrating the great potential of the DTBDT-EF unit for future organic photovoltaic applications.
References
More filters
Journal ArticleDOI

Fast parallel algorithms for short-range molecular dynamics

TL;DR: In this article, three parallel algorithms for classical molecular dynamics are presented, which can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors.

Fast parallel algorithms for short-range molecular dynamics

TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Journal ArticleDOI

The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin.

TL;DR: A complete set of intermolecular potential functions has been developed for use in computer simulations of proteins in their native environment and they have been parametrized directly to reproduce experimental thermodynamic and structural data on fluids.
Journal ArticleDOI

Bulk heterojunction solar cells with internal quantum efficiency approaching 100

TL;DR: In this paper, a polymer solar cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported.
Journal ArticleDOI

Efficient organic solar cells processed from hydrocarbon solvents

TL;DR: In this paper, the synergistic effects of a hydrocarbon solvent, a novel additive, a suitable choice of polymer side chain, and strong temperature-dependent aggregation of the donor polymer are used to produce active layers of organic solar cells in an environmentally friendly way.
Related Papers (5)