scispace - formally typeset
Journal ArticleDOI

Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain

Reads0
Chats0
TLDR
It is suggested that continuous neurogenesis is required for the maintenance and reorganization of the whole interneuron system in the olfactory bulb, the modulation and refinement of the existing neuronal circuits in the dentate gyrus and the normal behaviors involved in hippocampal-dependent memory.
Abstract
Neurogenesis occurs continuously in the forebrain of adult mammals, but the functional importance of adult neurogenesis is still unclear. Here, using a genetic labeling method in adult mice, we found that continuous neurogenesis results in the replacement of the majority of granule neurons in the olfactory bulb and a substantial addition of granule neurons to the hippocampal dentate gyrus. Genetic ablation of newly formed neurons in adult mice led to a gradual decrease in the number of granule cells in the olfactory bulb, inhibition of increases in the granule cell number in the dentate gyrus and impairment of behaviors in contextual and spatial memory, which are known to depend on hippocampus. These results suggest that continuous neurogenesis is required for the maintenance and reorganization of the whole interneuron system in the olfactory bulb, the modulation and refinement of the existing neuronal circuits in the dentate gyrus and the normal behaviors involved in hippocampal-dependent memory.

read more

Citations
More filters
Journal ArticleDOI

The glial nature of embryonic and adult neural stem cells

TL;DR: The timing in development and location of NSCs, a property tightly linked to their neuroepithelial origin, appear to be the key determinants of the types of neurons generated.
Journal ArticleDOI

New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?

TL;DR: Recent progress in the integration of adult-born neurons into the circuitry of the adult hippocampus suggests an important role for adult hippocampal neurogenesis in learning and memory, but its specific function in these processes has remained elusive.
Journal ArticleDOI

Dynamics of Hippocampal Neurogenesis in Adult Humans

TL;DR: It is concluded that neurons are generated throughout adulthood and that the rates are comparable in middle-aged humans and mice, suggesting that adult hippocampal neurogenesis may contribute to human brain function.
Journal ArticleDOI

Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation.

TL;DR: It is shown that inducible genetic expansion of the population of adult-born neurons through enhancing their survival improves performance in a specific cognitive task in which two similar contexts need to be distinguished, which is indicative of enhanced pattern separation.
References
More filters
Journal ArticleDOI

Mammalian neural stem cells.

TL;DR: Before the full potential of neural stem cells can be realized, the authors need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.
Journal ArticleDOI

Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain

TL;DR: It is shown that SVZ astrocytes act as neural stem cells in both the normal and regenerating brain and give rise to cells that grow into multipotent neurospheres in vitro.
Journal ArticleDOI

More hippocampal neurons in adult mice living in an enriched environment

TL;DR: It is shown that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages, and that the enriched mice have a larger hippocampal granule cell layer and 15 per cent moregranule cell neurons in the Dentate Gyrus.
Journal ArticleDOI

Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation

TL;DR: It is confirmed that in the adult rat brain, neuronal progenitor cells divide at the border between the hilus and the granule cell layer (GCL) and in adult rats, the progeny of these cells migrate into the GCL and express the neuronal markers NeuN and calbindin-D28k.
Related Papers (5)