scispace - formally typeset
Open AccessJournal ArticleDOI

Search-and-replace genome editing without double-strand breaks or donor DNA

Reads0
Chats0
TLDR
A new DNA-editing technique called prime editing offers improved versatility and efficiency with reduced byproducts compared with existing techniques, and shows potential for correcting disease-associated mutations.
Abstract
Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2-5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay-Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous TAP-IVS mutation in EPSPS.

TL;DR: In this article , Chen et al. proposed an optimized PE2 protein (PEmax) to improve the performance of prime editing in the context of CRISPR-Cas-derived precise genome editing.
Journal ArticleDOI

Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therapies for Cancer.

TL;DR: A comprehensive overview of CRISPR applications that have advanced ACT can be found in this article, where the authors provide a detailed description of such genetic modifications, highlighting avenues to enhance the therapeutic efficacy and accessibility of ACT for cancer.
Journal ArticleDOI

CRISPR Therapeutics for Duchenne Muscular Dystrophy

TL;DR: Gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system is a promising therapeutic for DMD, as it can permanently correct DMD mutations and thus restore the reading frame, allowing for the production of functional dystrophin.
Journal ArticleDOI

OUP accepted manuscript

TL;DR: In this paper , the authors measured base editing frequencies in two human cell lines for two cytosine and two adenine base editors at ∼14 000 target sequences and found that base editing activity is sequence-biased, with largest effects from nucleotides flanking the target base.
Posted ContentDOI

Efficient Retroelement-Mediated DNA Writing in Bacteria

TL;DR: A retroelement-mediated DNA writing system is engineered that enables efficient and precise editing of bacterial genomes without the requirement for target-specific elements or selection and enables a broad range of applications, including efficient, scarless, and cis-element-independent editing of targeted microbial genomes within complex communities.
References
More filters
Journal ArticleDOI

limma powers differential expression analyses for RNA-sequencing and microarray studies

TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Journal ArticleDOI

RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome

TL;DR: It is shown that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads, and estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired- end reads, depending on the number of possible splice forms for each gene.
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Related Papers (5)