scispace - formally typeset
Open AccessJournal ArticleDOI

The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO)

TLDR
The Atmospheric Imaging Assembly (AIA) as discussed by the authors provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution.
Abstract
The Atmospheric Imaging Assembly (AIA) provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution. The AIA consists of four telescopes that employ normal-incidence, multilayer-coated optics to provide narrow-band imaging of seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe xviii (94 A), Fe viii, xxi (131 A), Fe ix (171 A), Fe xii, xxiv (193 A), Fe xiv (211 A), He ii (304 A), and Fe xvi (335 A). One telescope observes C iv (near 1600 A) and the nearby continuum (1700 A) and has a filter that observes in the visible to enable coalignment with images from other telescopes. The temperature diagnostics of the EUV emissions cover the range from 6×104 K to 2×107 K. The AIA was launched as a part of NASA’s Solar Dynamics Observatory (SDO) mission on 11 February 2010. AIA will advance our understanding of the mechanisms of solar variability and of how the Sun’s energy is stored and released into the heliosphere and geospace.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Dynamics of On-disk Plumes as Observed with the Interface Region Imaging Spectrograph, the Atmospheric Imaging Assembly, and the Helioseismic and Magnetic Imager

TL;DR: In this paper, the role of small-scale transients in the formation and evolution of solar coronal plumes was examined using Atmospheric Imaging Assembly (AIA) images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory and spectroscopic data from the Interface Region Imaging Spectrograph (IRIS).
Journal ArticleDOI

Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO, IRIS, and Hinode

TL;DR: In this paper, the authors analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph (IRIS) and Hinode/EUV Imaging Spectrometer (EIS) data.
Journal ArticleDOI

Proper horizontal photospheric flows in a filament channel

TL;DR: In this article, the coupling between magnetic field and convection in filament channels and relate the horizontal photospheric motions to the activity of the filament has been analyzed using coherent structure tracking (CST).
Journal ArticleDOI

Statistical Study of GOES X-ray Quasi-Periodic Pulsations in Solar Flares

TL;DR: In this paper, the Fourier spectra of lightcurves of the GOES 1-8~A channel were analyzed to find the frequency of small amplitude quasi-periodic pulsations (QPPs) detected in soft X-ray emission.
References
More filters
Journal ArticleDOI

CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å

TL;DR: The CHIANTI database as mentioned in this paper is a set of atomic data and transition probabilities necessary to calculate the emission line spectrum of astrophysical plasmas, including atomic energy levels, atomic radiative data such as wavelengths, weighted oscillator strengths and A values, and electron collisional excitation rates.
Journal ArticleDOI

The X-Ray Telescope (XRT) for the Hinode Mission

TL;DR: The X-ray Telescope (XRT) of the Hinode mission as mentioned in this paper provides an unprecedented combination of spatial and temporal resolution in solar coronal studies, and the high sensitivity and broad dynamic range of XRT, coupled with the spacecraft's onboard memory capacity and the planned downlink capability, will permit a broad range of solar studies over an extended period of time for targets ranging from quiet Sun to X-flares.
Related Papers (5)