scispace - formally typeset
Open AccessJournal ArticleDOI

The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO)

TLDR
The Atmospheric Imaging Assembly (AIA) as discussed by the authors provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution.
Abstract
The Atmospheric Imaging Assembly (AIA) provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution. The AIA consists of four telescopes that employ normal-incidence, multilayer-coated optics to provide narrow-band imaging of seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe xviii (94 A), Fe viii, xxi (131 A), Fe ix (171 A), Fe xii, xxiv (193 A), Fe xiv (211 A), He ii (304 A), and Fe xvi (335 A). One telescope observes C iv (near 1600 A) and the nearby continuum (1700 A) and has a filter that observes in the visible to enable coalignment with images from other telescopes. The temperature diagnostics of the EUV emissions cover the range from 6×104 K to 2×107 K. The AIA was launched as a part of NASA’s Solar Dynamics Observatory (SDO) mission on 11 February 2010. AIA will advance our understanding of the mechanisms of solar variability and of how the Sun’s energy is stored and released into the heliosphere and geospace.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Secondary Waves, and/or the "Reflection" From and "Transmission" Through a Coronal Hole of an EUV Wave Associated With the 2011 February 15 X2.2 Flare Observed With SDO/AIA and STEREO/EUVI

TL;DR: In this article, the propagation of a coronal wave, also known as "EIT" wave, and its interaction with the coronal hole resulting in secondary waves and/or reflection and transmission are studied.
Journal ArticleDOI

Origin and structures of solar eruptions I: Magnetic flux rope

TL;DR: In this paper, the origin and early structures of coronal mass ejections (CMEs) and solar flares are discussed from a multi-wavelength observational perspective, with the aim of improving the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere.
Journal ArticleDOI

Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection

TL;DR: In this paper, the authors identify a hot rim around a quickly expanding cavity, embedded inside a much larger CME shell, which is later observed as the core of the white light CME, challenging the traditional interpretation of the CME three-part morphology.
Journal ArticleDOI

How common are hot magnetic flux ropes in the low solar corona? a statistical study of euv observations

TL;DR: In this article, the authors used data at 131, 171, and 304 Å from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to search for hot flux ropes in 141 M-class and X-class solar flares that occurred at solar longitudes equal to or larger than 50°.
References
More filters
Journal ArticleDOI

CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å

TL;DR: The CHIANTI database as mentioned in this paper is a set of atomic data and transition probabilities necessary to calculate the emission line spectrum of astrophysical plasmas, including atomic energy levels, atomic radiative data such as wavelengths, weighted oscillator strengths and A values, and electron collisional excitation rates.
Journal ArticleDOI

The X-Ray Telescope (XRT) for the Hinode Mission

TL;DR: The X-ray Telescope (XRT) of the Hinode mission as mentioned in this paper provides an unprecedented combination of spatial and temporal resolution in solar coronal studies, and the high sensitivity and broad dynamic range of XRT, coupled with the spacecraft's onboard memory capacity and the planned downlink capability, will permit a broad range of solar studies over an extended period of time for targets ranging from quiet Sun to X-flares.
Related Papers (5)