scispace - formally typeset
Open AccessJournal ArticleDOI

Tumour heterogeneity and cancer cell plasticity

Corbin E. Meacham, +1 more
- 19 Sep 2013 - 
- Vol. 501, Iss: 7467, pp 328-337
TLDR
Studies using lineage tracing and deep sequencing could have implications for the cancer stem-cell model and may help to determine the extent to which it accounts for therapy resistance and disease progression.
Abstract
Phenotypic and functional heterogeneity arise among cancer cells within the same tumour as a consequence of genetic change, environmental differences and reversible changes in cell properties. Some cancers also contain a hierarchy in which tumorigenic cancer stem cells differentiate into non-tumorigenic progeny. However, it remains unclear what fraction of cancers follow the stem-cell model and what clinical behaviours the model explains. Studies using lineage tracing and deep sequencing could have implications for the cancer stem-cell model and may help to determine the extent to which it accounts for therapy resistance and disease progression.

read more

Citations
More filters
Journal Article

Stem Cells,Cancer and Cancer Stem Cells

TL;DR: Research data show that more resistant stem cells than common cancer cells exist in cancer patients, and to identify unrecognized differences between cancer stem cells and cancer cells might be able to develop effective classification, diagnose and treat for cancer.

SF-010-4 Distant metastasis occurs late during the genetic evolution of pancreatic cancer

TL;DR: A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell.
Journal ArticleDOI

Evolution of the Cancer Stem Cell Model

TL;DR: It is proposed that the genetic and CSC models of cancer can be harmonized by considering the role of genetic diversity and nongenetic influences in contributing to tumor heterogeneity.
References
More filters
Journal ArticleDOI

Prospective identification of tumorigenic breast cancer cells

TL;DR: The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival and strategies designed to target this population may lead to more effective therapies.
Journal ArticleDOI

Stem cells, cancer, and cancer stem cells

TL;DR: Stem cell biology has come of age: Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine.
Journal ArticleDOI

The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells

TL;DR: It is reported that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers, and it is shown that those cells have an increased ability to form mammospheres, a property associated with mammARY epithelial stem cells.
Journal ArticleDOI

Identification of human brain tumour initiating cells

TL;DR: The development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo gives strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.
Journal ArticleDOI

Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell

TL;DR: It is demonstrated that the cell capable of initiating human AML in non-obese diabetic mice with severe combined immunodeficiency disease (NOD/SCID mice) — termed the SCID leukemia-initiating cell, or SL-IC — possesses the differentiate and proliferative capacities and the potential for self-renewal expected of a leukemic stem cell.
Related Papers (5)
Trending Questions (1)
What are the factors contribute to tumor heterogencity?

The factors that contribute to tumor heterogeneity include genetic changes, environmental differences, and reversible changes in cell properties.