scispace - formally typeset
Journal ArticleDOI

Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers

TLDR
This work demonstrates large-area (>tens of micrometers) heterostructures of CVD-grown WS2 and MoS2 monolayers, where the interlayer interaction is externally tuned from noncoupling to strong coupling, which opens up venues to creating new material systems with rich functionalities and novel physical effects.
Abstract
Band offsets between different monolayer transition metal dichalcogenides are expected to efficiently separate charge carriers or rectify charge flow, offering a mechanism for designing atomically thin devices and probing exotic two-dimensional physics. However, developing such large-area heterostructures has been hampered by challenges in synthesis of monolayers and effectively coupling neighboring layers. Here, we demonstrate large-area (>tens of micrometers) heterostructures of CVD-grown WS2 and MoS2 monolayers, where the interlayer interaction is externally tuned from noncoupling to strong coupling. Following this trend, the luminescence spectrum of the heterostructures evolves from an additive line profile where each layer contributes independently to a new profile that is dictated by charge transfer and band normalization between the WS2 and MoS2 layers. These results and findings open up venues to creating new material systems with rich functionalities and novel physical effects.

read more

Citations
More filters
Journal ArticleDOI

2D materials and van der Waals heterostructures

TL;DR: Two-dimensional heterostructures with extended range of functionalities yields a range of possible applications, and spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system.
Journal ArticleDOI

Valleytronics in 2D materials

TL;DR: In this article, the latest advances in valley-tronics have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.
Journal ArticleDOI

Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material

TL;DR: In this article, the basic lattice vibrations of 2D transition metal dichalcogenide (TMD) nanosheets are discussed, including highfrequency optical phonons, interlayer shear and layer breathing phonons.
Journal ArticleDOI

Defect engineering of two-dimensional transition metal dichalcogenides

TL;DR: In this article, structural defects in two-dimensional transition metal dichalcogenides (TMDs) have been studied and the authors provide a comprehensive understanding of structural defects and the pathways to generating structural defects during and after synthesis.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Semiempirical GGA-type density functional constructed with a long-range dispersion correction.

TL;DR: A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Related Papers (5)