scispace - formally typeset
Journal ArticleDOI

Tweezers with a twist

Miles J. Padgett, +1 more
- 01 Jun 2011 - 
- Vol. 5, Iss: 6, pp 343-348
TLDR
The fact that light carries both linear and angular momentum is well-known to physicists as discussed by the authors, and one application of the linear momentum of light is for optical tweezers, in which the refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam.
Abstract
The fact that light carries both linear and angular momentum is well-known to physicists. One application of the linear momentum of light is for optical tweezers, in which the refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam. The angular momentum of light can also be transfered to particles, causing them to spin. In fact, the angular momentum of light has two components that act through different mechanisms on various types of particle. This Review covers the creation of such beams and how their unusual intensity, polarization and phase structure has been put to use in the field of optical manipulation.

read more

Citations
More filters
Journal ArticleDOI

Terabit free-space data transmission employing orbital angular momentum multiplexing

TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Journal ArticleDOI

Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities

TL;DR: The authors survey the steady refinement of techniques used to create optical vortices, and explore their applications, which include sophisticated optical computing processes, novel microscopy and imaging techniques, the creation of ‘optical tweezers’ to trap particles of matter, and optical machining using light to pattern structures on the nanoscale.
Journal ArticleDOI

Optical trapping and manipulation of nanostructures

TL;DR: The state-of-the-art in optical trapping at the nanoscale is reviewed, with an emphasis on some of the most promising advances, such as controlled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution, and biosensors.
Journal ArticleDOI

Shaping the future of manipulation

TL;DR: In this paper, the authors summarized the impact and emerging applications of shaped light in the field of optical manipulation, particularly in the fields of physics, biology, and soft condensed matter.
References
More filters
Book

Classical Electrodynamics

Journal ArticleDOI

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.

TL;DR: Laser light with a Laguerre-Gaussian amplitude distribution is found to have a well-defined orbital angular momentum and an astigmatic optical system may be used to transform a high-order LaguERre- Gaussian mode into aHigh-order Hermite-Gaussia mode reversibly.
Journal ArticleDOI

Observation of a single-beam gradient force optical trap for dielectric particles

TL;DR: Optical trapping of dielectric particles by a single-beam gradient force trap was demonstrated for the first reported time, confirming the concept of negative light pressure due to the gradient force.
Journal ArticleDOI

A revolution in optical manipulation

TL;DR: This research presents the next generation of single-beam optical traps, which promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics and even become consumer products.
Journal ArticleDOI

Entanglement of the orbital angular momentum states of photons

TL;DR: This work demonstrates entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum, which provides a practical route to entangled states that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography.
Related Papers (5)