scispace - formally typeset
Search or ask a question

Showing papers on "Adaptive optics published in 2011"


Journal ArticleDOI
TL;DR: A series of new data processing and imaging extraction protocols, enabled by the ultrawide-field isotropic data sets, are presented, which enable both, cross-sectional images along arbitrary coordinates and depth-resolved en-face fundus images.
Abstract: We demonstrate ultrahigh speed swept source retinal OCT imaging using a Fourier domain mode locked (FDML) laser. The laser uses a combination of a semiconductor optical amplifier and an ytterbium doped fiber amplifier to provide more than 50mW output power. The 1050nm FDML laser uses standard telecom fiber for the km long delay line instead of two orders of magnitude more expensive real single mode fiber. We investigate the influence of this “oligo-mode” fiber on the FDML laser performance. Two design configurations with 684,400 and 1,368,700 axial scans per second are investigated, 25x and 50x faster than current commercial instruments and more than 4x faster than previous single spot ophthalmic results. These high speeds enable the acquisition of densely sampled ultrawide-field data sets of the retina within a few seconds. Ultrawide-field data consisting of 1900 x 1900 A-scans with ~70° degrees angle of view are acquired within only 3 and 6 seconds using the different setups. Such OCT data sets, more than double as large as previously reported, are collapsed to a 4 megapixel high definition fundus image. We achieve good penetration into the choroid by hardware spectral shaping of the laser output. The axial resolution in tissue is 12µm (684kHz) and 19µm (1.37MHz). A series of new data processing and imaging extraction protocols, enabled by the ultrawide-field isotropic data sets, are presented. Dense isotropic sampling enables both, cross-sectional images along arbitrary coordinates and depth-resolved en-face fundus images. Additionally, we investigate how isotropic averaging compares to the averaging of cross-sections along the slow axis.

332 citations


Journal ArticleDOI
TL;DR: A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented.
Abstract: A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other.

279 citations


Journal ArticleDOI
TL;DR: In this paper, a microlens-based integral field spectrograph integrated with a diffraction-limited, partially apodized-pupil Lyot coronagraph is presented.
Abstract: We describe a new instrument that forms the core of a long-term high contrast imaging program at the 200 inch (5 m) Hale Telescope at Palomar Observatory. The primary scientific thrust is to obtain images and low-resolution spectroscopy of brown dwarfs and young exoplanets of several Jupiter masses in the vicinity of stars within 50 pc of the Sun. The instrument is a microlens-based integral field spectrograph integrated with a diffraction-limited, apodized-pupil Lyot coronagraph. The entire combination is mounted behind the Palomar adaptive optics (AO) system. The spectrograph obtains imaging in 23 channels across the J and H bands (1.06–1.78 μm). The image plane of our spectrograph is subdivided by a 200 × 200 element microlens array with a plate scale of 19.2 mas per microlens, critically sampling the diffraction-limited point-spread function at 1.06 μm. In addition to obtaining spectra, this wavelength resolution allows suppression of the chromatically dependent speckle noise, which we describe. In addition, we have recently installed a novel internal wave front calibration system that will provide continuous updates to the AO system every 0.5–1.0 minutes by sensing the wave front within the coronagraph. The Palomar AO system is undergoing an upgrade to a much higher order AO system (PALM-3000): a 3388-actuator tweeter deformable mirror working together with the existing 241-actuator mirror. This system, the highest-resolution AO corrector of its kind, will allow correction with subapertures as small as 8.1 cm at the telescope pupil using natural guide stars. The coronagraph alone has achieved an initial dynamic range in the H band of 2 × 10^(-4) at 1″, without speckle noise suppression. We demonstrate that spectral speckle suppression provides a factor of 10–20 improvement over this, bringing our current contrast at 1″ to ~2 × 10^(-5). This system is the first of a new generation of apodized-pupil coronagraphs combined with high-order adaptive optics and integral field spectrographs (e.g., GPI, SPHERE, HiCIAO), and we anticipate that this instrument will make a lasting contribution to high-contrast imaging in the Northern Hemisphere for years.

229 citations


Journal ArticleDOI
TL;DR: The refractive index in the somatosensory cortex of 7 rats in vivo is measured using defocus optimization in full-field optical coherence tomography (ff-OCT) to find n' to be independent of imaging depth or rat age, indicating that adaptive optics will improve imaging depth.
Abstract: Two-photon laser scanning microscopy (2PLSM) is an important tool for in vivo tissue imaging with sub-cellular resolution, but the penetration depth of current systems is potentially limited by sample-induced optical aberrations. To quantify these, we measured the refractive index n' in the somatosensory cortex of 7 rats in vivo using defocus optimization in full-field optical coherence tomography (ff-OCT). We found n' to be independent of imaging depth or rat age. From these measurements, we calculated that two-photon imaging beyond 200 µm into the cortex is limited by spherical aberration, indicating that adaptive optics will improve imaging depth.

167 citations


PatentDOI
TL;DR: In this paper, an abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure, with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract: A fluidic optical device may include a first optical surface that includes an deformable material and a second optical surface that includes a rigid material. An optical fluid disposed between first and second optical surfaces and an actuator is disposed in communication with first optical surface. Activation of actuator results in a deformation of first optical surface and displacement of optical fluid. The deformation and displacement result in a change in an optical property of the device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.

156 citations


Journal ArticleDOI
TL;DR: A confocal fluorescence microscope with adaptive optics, which can correct aberrations based on direct wavefront measurements using a Shack-Hartmann wavefront sensor with a fluorescent bead used as a point source reference beacon, is introduced.
Abstract: Optical aberrations due to the inhomogeneous refractive index of tissue degrade the resolution and brightness of images in deep-tissue imaging. We introduce a confocal fluorescence microscope with adaptive optics, which can correct aberrations based on direct wavefront measurements using a Shack-Hartmann wavefront sensor with a fluorescent bead used as a point source reference beacon. The results show a 4.3× improvement in the Strehl ratio and a 240% improvement in the signal intensity for fixed mouse tissues at depths of up to 100 μm.

154 citations


Journal ArticleDOI
TL;DR: An at-wavelength wavefront error sensing method based on x-ray interferometry and an in situ phase compensator mirror, which adaptively deforms with nanometer precision, were developed to satisfy the Rayleigh criterion to achieve diffraction-limited focusing in a single-nanometer range.
Abstract: We have constructed an extremely precise optical system for hard-x-ray nanofocusing in a synchrotron radiation beamline. Precision multilayer mirrors were fabricated, tested, and employed as Kirkpatrick–Baez mirrors with a novel phase error compensator. In the phase compensator, an at-wavelength wavefront error sensing method based on x-ray interferometry and an in situ phase compensator mirror, which adaptively deforms with nanometer precision, were developed to satisfy the Rayleigh criterion to achieve diffraction-limited focusing in a single-nanometer range. The performance of the optics was tested at BL29XUL of SPring-8 and was confirmed to realize a spot size of approximately 7 nm.

143 citations


Journal ArticleDOI
TL;DR: A parallel wavefront optimization method is demonstrated experimentally to focus light through random scattering media using the simultaneous modulation of multiple phase elements at a unique frequency to determine the optimal wavefront.
Abstract: A parallel wavefront optimization method is demonstrated experimentally to focus light through random scattering media. The simultaneous modulation of multiple phase elements, each at a unique frequency, enables a parallel determination of the optimal wavefront. Compared to a pixel-by-pixel measurement, the reported parallel method uses the target signal in a highly efficient way. With 441 phase elements, a high-quality focus was formed through a glass diffuser with a peak-to-background ratio of ∼270. The accuracy and repeatability of the system were tested through experiments.

132 citations


Journal ArticleDOI
TL;DR: The results indicate that the performance of the relay-assisted system is much better than that of the MT system in different cases considered and shows that there is an optimum place for the relay from the BEP point of view.
Abstract: Fading and path loss are the major challenges in practical deployment of free space optical communication systems. In this paper, a cooperative free space communication via an optical amplify-and-forward relay is considered to deal with these challenges. We use photon counting approach to investigate the system bit error probability (BEP) performance and study the effects of atmospheric turbulence, background light, amplified spontaneous emission, and receiver thermal noise on the system performance. We compare the results with those of the multiple-transmitter (MT) system. The results indicate that the performance of the relay-assisted system is much better than that of the MT system in different cases considered. We show that there is an optimum place for the relay from the BEP point of view.

128 citations


Journal ArticleDOI
TL;DR: In this article, a multi-object adaptive optics (MOAO) system was successfully demonstrated on-sky for the first time at the 4.2m William Herschel Telescope, Canary Islands, Spain, at the end of September 2010.
Abstract: Context. A new challenging adaptive optics (AO) system, called multi-object adaptive optics (MOAO), has been successfully demonstrated on-sky for the first time at the 4.2 m William Herschel Telescope, Canary Islands, Spain, at the end of September 2010.Aims. This system, called CANARY, is aimed at demonstrating the feasibility of MOAO in preparation of a future multi-object near infra-red (IR) integral field unit spectrograph to equip extremely large telescopes for analysing the morphology and dynamics of high-z galaxies.Methods. CANARY compensates for the atmospheric turbulence with a deformable mirror driven in open-loop and controlled through a tomographic reconstruction by three widely separated off-axis natural guide star (NGS) wavefront sensors, which are in open loop too. We compared the performance of conventional closed-loop AO, MOAO, and ground-layer adaptive optics (GLAO) by analysing both IR images and simultaneous wave-front measurements.Results. In H -band, Strehl ratios of 0.20 are measured with MOAO while achieving 0.25 with closed-loop AO in fairly similar seeing conditions (r 0 ≈ 15 cm at 0.5 μ m). As expected, MOAO has performed at an intermediate level between GLAO and closed-loop AO.

123 citations


Journal ArticleDOI
TL;DR: In this paper, the wave-front correction system developed for the Sunrise balloon telescope was described, and information about its in-flight performance was provided, including the accuracy of correction of low-order aberrations.
Abstract: This paper describes the wave-front correction system developed for the Sunrise balloon telescope, and it provides information about its in-flight performance. For the correction of low-order aberrations, a Correlating Wave-Front Sensor (CWS) was used. It consisted of a six-element Shack – Hartmann wave-front sensor (WFS), a fast tip-tilt mirror for the compensation of image motion, and an active telescope secondary mirror for focus correction. The CWS delivered a stabilized image with a precision of 0.04 arcsec (rms), whenever the coarse pointing was better than ± 45 arcsec peak-to-peak. The automatic focus adjustment maintained a focus stability of 0.01 waves in the focal plane of the CWS. During the 5.5 day flight, good image quality and stability were achieved during 33 hours, containing 45 sequences, which lasted between 10 and 45 min.

Journal ArticleDOI
TL;DR: The Shack-Hartmann wavefront sensor spots upon which ocular aberration measurements depend have poor quality in mice, but it is predicted that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye.
Abstract: The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye.

Proceedings ArticleDOI
TL;DR: The comparison of the performances offered by a Natural Guide Star (NGS) system upgraded with the state-of-the-art technology and those delivered by existing Laser Guides Star (LGS) systems suggests rethinking the current role ascribed to NGS and LGS in the next generation of AO systems.
Abstract: The Large Binocular Telescope (LBT) is a unique telescope featuring two co-mounted optical trains with 8.4m primary mirrors. The telescope Adaptive Optics (AO) system uses two innovative key components, namely an adaptive secondary mirror with 672 actuators and a high-order pyramid wave-front sensor. During the on-sky commissioning such a system reached performances never achieved before on large ground-based optical telescopes. Images with 40mas resolution and Strehl Ratios higher than 80% have been acquired in H band (1.6 μm). Such images showed a contrast as high as 10-4. Based on these results, we compare the performances offered by a Natural Guide Star (NGS) system upgraded with the state-of-the-art technology and those delivered by existing Laser Guide Star (LGS) systems. The comparison, in terms of sky coverage and performances, suggests rethinking the current role ascribed to NGS and LGS in the next generation of AO systems for the 8-10 meter class telescopes and Extremely Large Telescopes (ELTs).

Journal ArticleDOI
TL;DR: Cone length analysis demonstrates that UHR-AO-OCT is sufficiently sensitive to measure real length differences between cones in the same 0.5° retinal patch, and requires no more than five measurements of OS length to achieve 95% confidence.
Abstract: Cone photoreceptors in the living human eye have recently been imaged with micron-scale resolution in all three spatial dimensions using adaptive optics optical coherence tomography. While these advances have allowed non-invasive study of the three-dimensional structure of living human cones, studies of their function and physiology are still hampered by the difficulties to monitor the same cells over time. The purpose of this study is to demonstrate the feasibility of cone monitoring using ultrahigh-resolution adaptive optics optical coherence tomography. Critical to this is incorporation of a high speed CMOS camera (125 KHz) and a novel feature-based, image registration/dewarping algorithm for reducing the deleterious effects of eye motion on volume images. Volume movies were acquired on three healthy subjects at retinal eccentricities from 0.5° to 6°. Image registration/dewarping reduced motion artifacts in the movies from 15 μm to 1.3 μm root mean square, the latter sufficient for identifying and tracking cones. Cone row-to-row spacing and outer segment lengths were consistent with that reported in the literature. Cone length analysis demonstrates that UHR-AO-OCT is sufficiently sensitive to measure real length differences between cones in the same 0.5° retinal patch, and requires no more than five measurements of OS length to achieve 95% confidence. We know of no other imaging modality that can monitor foveal or parafoveal cones over time with comparable resolution in all three dimensions.

Journal ArticleDOI
TL;DR: A technique for measuring and correcting the wavefront aberrations introduced by a biological sample using a Shack-Hartmann wavefront sensor, a fluorescent reference source, and a deformable mirror is reported.
Abstract: We report a technique for measuring and correcting the wavefront aberrations introduced by a biological sample using a Shack–Hartmann wavefront sensor, a fluorescent reference source, and a deformable mirror. The reference source and sample fluorescence are at different wavelengths to separate wavefront measurement and sample imaging. The measurement and correction at one wavelength improves the resolving power at a different wavelength, enabling the structure of the sample to be resolved.

Journal ArticleDOI
TL;DR: The architecture, enabling technologies, and benefits of elastic and adaptive optical networks with the new concept of an optical corridor are overviewed and some possible study items that are relevant to the future standardization activities are discussed.
Abstract: There is growing recognition that we are rapidly approaching the physical capacity limit of standard optical fiber. It is important to make better use of optical network resources to accommodate the ever-increasing traffic demand. One promising way is to introduce elasticity and adaptation into the optical domain through more flexible spectrum allocation, where the required minimum spectral resources are allocated adaptively based on traffic demand and network conditions. In this article, we discuss elastic and adaptive optical networks from the perspective of future standardization. We first overview the architecture, enabling technologies, and benefits of elastic and adaptive optical networks with the new concept of an optical corridor. We then present possible adoption scenarios from current rigid optical networks to elastic and adaptive optical networks. We discuss some possible study items that are relevant to the future standardization activities. These items include optical transport network architecture, structure and mapping of the optical transport unit, automatically switched optical network/generalized multiprotocol label switching control plane issues, and some physical aspects with possible extension of the current frequency grid.

Journal ArticleDOI
TL;DR: Details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector are described.
Abstract: We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented.

Journal ArticleDOI
TL;DR: It is shown that aberration compensation is essential for the generation of controlled micron-scale features at depths greater than 200 μm, and the dual adaptive optics approach demonstrates increased fabrication efficiency relative to experiments using a single adaptive element.
Abstract: Femtosecond laser fabrication of controlled three dimensional structures deep in the bulk of diamond is facilitated by a dual adaptive optics system. A deformable mirror is used in parallel with a liquid crystal spatial light modulator to compensate the extreme aberrations caused by the refractive index mismatch between the diamond and the objective immersion medium. It is shown that aberration compensation is essential for the generation of controlled micron-scale features at depths greater than 200 μm, and the dual adaptive optics approach demonstrates increased fabrication efficiency relative to experiments using a single adaptive element.

Journal ArticleDOI
Heidi Hofer1, Nripun Sredar1, Hope M Queener1, Chaohong Li1, Jason Porter1 
TL;DR: Real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wave front sensor based control in the same system is demonstrated.
Abstract: Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains.

Proceedings ArticleDOI
06 Nov 2011
TL;DR: An approach to alleviate image degradations caused by imperfect optics is presented, relying on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution.
Abstract: Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

Journal ArticleDOI
TL;DR: In this paper, the Project 1640 speckle suppression pipeline was proposed to suppress the intensity of residual contaminating light in close angular proximity to target stars, achieving near-infrared contrast levels of order ≈10^(−7) at subarcsecond separations.
Abstract: Project 1640 is a high-contrast imaging instrument recently commissioned at the Palomar observatory. A combination of a coronagraph with an integral-field spectrograph (IFS), Project 1640 is designed to detect and characterize extrasolar planets, brown dwarfs, and circumstellar material orbiting nearby stars. In this paper, we present our data processing techniques for improving upon instrument raw sensitivity via the removal of quasi-static speckles. Our approach utilizes the chromatic image diversity provided by the IFS in combination with the locally optimized combination of images algorithm to suppress the intensity of residual contaminating light in close angular proximity to target stars. We describe the Project 1640 speckle suppression pipeline and demonstrate its ability to detect companions with brightness comparable to and below that of initial speckle intensities using on-sky commissioning data. Our preliminary results indicate that suppression factors of at least one order of magnitude are consistently possible, reaching 5σ contrast levels of 2.1 × 10^(–5) at 1" in the H band in 20 minutes of on-source integration time when non-common-path errors are reasonably well calibrated. These results suggest that near-infrared contrast levels of order ≈10^(–7) at subarcsecond separations will soon be possible for Project 1640 and similarly designed instruments that receive a diffraction-limited beam corrected by adaptive optics systems employing deformable mirrors with high actuator density.

Journal ArticleDOI
TL;DR: The results show that the Strehl ratio is improved from 0.07 to about 0.90, with only N + 1 photodetector measurement for the AO correction system using N aberration modes as the predetermined bias functions.
Abstract: Wavefront sensorless adaptive optics (AO) systems have been widely studied in recent years To reach optimum results, such systems require an efficient correction method In this paper, a general model-based correction method for a wavefront sensorless AO system is presented The general model-based approach is set up based on a relationship wherein the second moments (SM) of the wavefront gradients are approximately proportionate to the FWHM of the far-field intensity distribution The general model-based method is capable of taking various common sets of functions as predetermined bias functions and correcting the aberrations by using fewer photodetector measurements Numerical simulations of AO corrections of various random aberrations are performed The results show that the Strehl ratio is improved from 007 to about 090, with only N + 1 photodetector measurement for the AO correction system using N aberration modes as the predetermined bias functions

Journal ArticleDOI
TL;DR: A direct wavefront sensing method using structures labeled with fluorescent proteins in tissues as guide stars is introduced and shows increased image contrast and 3× improvement in the signal intensity for fixed mouse tissues at depths of 70 μm.
Abstract: We introduce a direct wavefront sensing method using structures labeled with fluorescent proteins in tissues as guide stars. An adaptive optics confocal microscope using this method is demonstrated for imaging of mouse brain tissue. A dendrite and a cell body of a neuron labeled with yellow fluorescent protein are tested as guide stars without injection of other fluorescent labels. Photobleaching effects are also analyzed. The results shows increased image contrast and 3× improvement in the signal intensity for fixed mouse tissues at depths of 70 μm.

Journal ArticleDOI
TL;DR: By correcting the aberration based on experimentally determined values, it is shown that the size of written structures decreases dramatically, which allows the fabrication of high quality micro-structures such as three-dimensional photonic crystals.
Abstract: We present the use of a liquid crystal spatial light modulator to correct for the refractive-index mismatch induced spherical aberration in a high refractive-index lithium niobate crystal when a low repetition rate amplified laser is used for the direct fabrication of three-dimensional micro-structures. By correcting the aberration based on experimentally determined values, we show that the size of written structures decreases dramatically, which allows the fabrication of high quality micro-structures such as three-dimensional photonic crystals. We demonstrate that, through the use of adaptive optics, the fabrication depth and the stopgap strength in the corresponding photonic crystals are increased by a factor of two to three.

Journal ArticleDOI
TL;DR: A review of solar adaptive optics techniques and summarizes the recent progress in the field of solar AO can be found in this paper, where a discussion of Multi-Conjugate AO and Ground-Layer AO (GLAO) is given.
Abstract: Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

Journal ArticleDOI
TL;DR: The results imply wavefront shaping methods can be generalized to allow focusing of optical pulses in turbid media and support the experimental findings with calculations based on transport theory.
Abstract: We study the effect of frequency detuning on light focused through turbid media. By shaping the wavefront of the incident beam light is focused through an opaque scattering layer. When detuning the laser we observe a gradual decrease of the focus intensity, while the position, size,and shape of the focus remain the same within experimental accuracy. The frequency dependence of the focus intensity follows a measured speckle correlation function. We support our experimental findings with calculations based on transport theory. Our results imply wavefront shaping methods can be generalized to allow focusing of optical pulses in turbid media.

Proceedings ArticleDOI
06 Oct 2011
TL;DR: In this paper, a 6.5 GHz bidirectional laser communication at 1064 nm has been demonstrated on a repeatable basis between a Tesat and a NFIRE low-earth-orbiting spacecraft, with the longest being 177 seconds in duration.
Abstract: 5.625 Gbps bidirectional laser communication at 1064 nm has been demonstrated on a repeatable basis between a Tesat coherent laser communication terminal with a 6.5 cm diameter ground aperture mounted inside the European Space Agency Optical Ground Station dome at Izana, Tenerife and a similar space-based terminal (12.4 cm diameter aperture) on the Near-Field InfraRed Experiment (NFIRE) low-earth-orbiting spacecraft. Both night and day bidirectional links were demonstrated with the longest being 177 seconds in duration. Correlation with atmospheric models and preliminary atmospheric r0 and scintillation measurements have been made for the conditions tested, suggesting that such coherent systems can be deployed successfully at still lower altitudes without resorting to the use of adaptive optics for compensation.

Journal ArticleDOI
TL;DR: Optical defocus as low as 1 D has a large impact on most peripheral visual tasks, with high-contrast resolution being the exception.
Abstract: This thesis is about our peripheral vision. Peripheral vision is poor compared to central vision, due to both neural and optical factors. The optical factors include astigmatism, defocus and higher order aberrations consisting mainly of coma. Neurally, the density of ganglion cells decreases towards the periphery, which limits the sampling density. The questions that this thesis attempts to answer are how much and under which circumstances correction of optical errors can improve peripheral vision. For this, an adaptive optics system has been constructed with a wavefront sensor and a deformable mirror working in closed loop to perform real-time correction of optical errors. To investigate vision, psychophysical routines utilizing Bayesian methods have been evaluated and modified for peripheral vision to handle the presence of aliasing, fixation instability and rapid fatigue.We found that correcting both refractive errors and higher order aberrations improved peripheral low-contrast resolution acuity. \\We looked at two specific topics in peripheral vision research in particular: Central visual field loss and myopia development. Persons with central visual field loss have to rely on their remaining peripheral vision, and it is of great interest to understand whether optical correction can offer them any benefits. In a case study on a single subject, we found meaningful improvements in vision with both optimized refractive correction as well as additional benefits with aberration correction. These improvements were larger than for comparable healthy subjects with a similar magnitude of aberrations. When it comes to myopia development, an interesting hypothesis is that peripheral optics affect and guide the emmetropization process. We have found an asymmetric depth of field in the periphery for myopic subjects, caused by their higher order aberrations, and presented a model on how this asymmetry may influence the emmetropization process.

Journal ArticleDOI
TL;DR: A pupil-segmentation based adaptive optical approach with full-pupil illumination that recovers diffraction-limited performance and improves imaging signal and resolution in a two-photon fluorescence microscope.
Abstract: Optical aberrations deteriorate the performance of microscopes. Adaptive optics can be used to improve imaging performance via wavefront shaping. Here, we demonstrate a pupil-segmentation based adaptive optical approach with full-pupil illumination. When implemented in a two-photon fluorescence microscope, it recovers diffraction-limited performance and improves imaging signal and resolution.

Proceedings ArticleDOI
TL;DR: In this paper, a common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength, and the phase shift in the central core of the PSF is dynamic and or arbitrary size.
Abstract: The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static π/2 phase shift to the central core (~ λ/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.