scispace - formally typeset
Search or ask a question

Showing papers on "Antigen published in 1987"


Journal ArticleDOI
01 Oct 1987-Nature
TL;DR: The class I histocompatibility antigen from human cell membranes has two structural motifs: the membrane-proximal end of the glycoprotein contains two domains with immunoglobulin-folds that are paired in a novel manner and the region distal from the membrane is a platform of eight antiparallel β-strands topped by α-helices.
Abstract: The class I histocompatibility antigen from human cell membranes has two structural motifs: the membrane-proximal end of the glycoprotein contains two domains with immunoglobulin-folds that are paired in a novel manner, and the region distal from the membrane is a platform of eight antiparallel beta-strands topped by alpha-helices. A large groove between the alpha-helices provides a binding site for processed foreign antigens. An unknown 'antigen' is found in this site in crystals of purified HLA-A2.

3,290 citations


Journal ArticleDOI
01 Oct 1987-Nature
TL;DR: Most of the polymorphic amino acids of the class I histocompatibility antigen, HLA-A2, are clustered on top of the molecule in a large groove identified as the recognition site for processed foreign antigens.
Abstract: Most of the polymorphic amino acids of the class I histocompatibility antigen, HLA-A2, are clustered on top of the molecule in a large groove identified as the recognition site for processed foreign antigens. Many residues critical for T-cell recognition of HLA are located in this site, in positions allowing them to serve as ligands to processed antigens. These findings have implications for how the products of the major histocompatibility complex (MHC) recognize foreign antigens.

2,351 citations


Journal ArticleDOI
TL;DR: Results identify T3-epsilon as a cell surface protein involved in the transduction of activation signals and can both activate and inhibit T-cell function.
Abstract: A monoclonal antibody (145-2C11) specific for the murine T3 complex was derived by immunizing Armenian hamsters with a murine cytolytic T-cell clone. The antibody is specific for a 25-kDa protein component (T3-epsilon) of the antigen-specific T-cell receptor. It reacts with all mature T cells and can both activate and inhibit T-cell function. These results identify T3-epsilon as a cell surface protein involved in the transduction of activation signals.

1,509 citations


Journal Article
TL;DR: Evidence is presented here to show that one type of helper T cell clone (TH1) causes delayed-type hypersensitivity (DTH) when injected with the appropriate antigen into the footpads of naive mice.
Abstract: We have previously shown that at least two types of Lyt-1+, Lyt-2-, L3T4+ helper T cell clones can be distinguished in vitro by different patterns of lymphokine secretion and by different forms of B cell help. Evidence is presented here to show that one type of helper T cell clone (TH1) causes delayed-type hypersensitivity (DTH) when injected with the appropriate antigen into the footpads of naive mice. The antigen-specific, major histocompatability complex (MHC)-restricted footpad swelling reaction peaked at approximately 24 hr. Footpad swelling was induced by all TH1 clones tested so far, including clones specific for soluble, particulate, or allogeneic antigens. In contrast, local transfer of TH2 cells and antigen did not produce a DTH reaction, even when supplemented with syngeneic spleen accessory cells. Similarly, local transfer of an alloreactive cytotoxic T lymphocyte clone into appropriate recipients did not produce DTH. The requirements for the DTH reaction induced by TH1 cells were investigated further by using TH1 clones with dual specificity for both foreign antigens and M1s antigens. Although these clones responded in vitro to either antigen + syngeneic presenting cells, or M1s disparate spleen cells, they responded in vivo only to antigen + MHC and did not cause footpad swelling in an M1s-disparate mouse in the absence of antigen. Moreover, in vitro preactivation of TH1 or TH2 cells with the lectin concanavalin A was insufficient to induce DTH reactions upon subsequent injection into footpads. From these results, we conclude that the lack of DTH given by TH2 clones in vivo could be due to the inability of the TH2 cells to produce the correct mediators of DTH, or to a lack of stimulation of TH2 clones in the footpad environment.

1,201 citations


Journal ArticleDOI
TL;DR: The results suggest that nonmitogenic T cell recognition of antigen/MHC on ECDI-modified APCs results in the functional inactivation of T cell clones.
Abstract: We investigated the antigen specificity and presentation requirements for inactivation of T lymphocytes in vitro and in vivo. In vitro studies revealed that splenocytes treated with the crosslinker 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (ECDI) and soluble antigen fragments failed to stimulate significant proliferation by normal pigeon cytochrome c-specific T cell clones, suggesting that the chemical treatment inactivated full antigen presentation function. However, T cell clones exposed to ECDI-treated splenocytes and antigen in vitro were rendered unresponsive for at least 8 d to subsequent antigen stimulation with normal presenting cells. As predicted by the in vitro results, specific T cell unresponsiveness was also induced in vivo in B10.A mice injected intravenously with B10.A, but not B10.A(4R), splenocytes coupled with pigeon cytochrome c via ECDI. The antigen and MHC specificity of the induction of this T cell unresponsiveness in vitro and in vivo was identical to that required for T cell activation. These results suggest that nonmitogenic T cell recognition of antigen/MHC on ECDI-modified APCs results in the functional inactivation of T cell clones.

1,199 citations


Journal ArticleDOI
TL;DR: A recently developed approach to the synthesis and ELISA screening of large numbers of peptides has created the opportunity to tackle questions about the sites and specificity of antigenic determinants which were formerly thought to be too difficult to answer.

1,067 citations


Journal ArticleDOI
TL;DR: A cDNA encoding the CD2 antigen has been isolated by a highly efficient technique based on transient expression in COS cells and adherence of cells expressing surface antigen to antibody-coated dishes.
Abstract: A cDNA encoding the CD2 antigen has been isolated by a highly efficient technique based on transient expression in COS cells and adherence of cells expressing surface antigen to antibody-coated dishes. COS cells expressing a CD2 cDNA isolated by this method readily formed rosettes with sheep as well as human and other mammalian erythrocytes. Pretreatment of transfected COS cells with anti-CD2 antibody, or pretreatment of human erythrocytes with anti-LFA-3 antibody, abolished rosette formation.

971 citations


Book ChapterDOI
TL;DR: The impact of new information concerning IgA physiology on the immune system is discussed, which suggests that IgA should not be considered only as an isotype providing specific humoral protection of mucosal surfaces but as an integral component of the entire immune system.
Abstract: Publisher Summary This chapter discusses the impact of new information concerning IgA physiology on the immune system. IgA should not be considered only as an isotype providing specific humoral protection of mucosal surfaces but as an integral component of the entire immune system. An unusual structural feature of human IgA is the heterogeneity of the molecular forms with characteristic distribution in various body fluids. Though most IgA in serum displays a typical four-polypeptide chain structure of the basic molecule with two Q and two light (L) chains, external secretions contain dimeric and tetrameric, disulfide-linked molecules associated with additional polypeptides-J (joining) chain and secretory component (SC). IgA-producing plasma cells are distributed in various lymphoid and nonlymphoid tissues and are particularly preponderant in the lamina propria of the gut; in salivary, lacrimal, and lactating mammary glands; and in the human bone marrow. IgA occurs in different body fluids in predominantly polymeric or monomeric (plasma, cerebrospinal fluid) forms with a characteristic distribution of IgAl and IgAz molecules. Under normal conditions, an absolute majority of IgA-containing cells in secretory glands and tissues also contain J chain whereas such cells in, for example, normal bone marrow does not. Staining with fluorochrome-labeled anti-J chain is enhanced by the pretreatment of alcohol-fixed tissue sections with acid urea, which leads to the exposure of masked antigenic determinants of intracellular J chain. Specialized lymphoid tissues associated with mucosal surfaces play an essential role in the induction and regulation of generalized immune responses in external secretions.

947 citations


Journal ArticleDOI
01 Dec 1987-Blood
TL;DR: A new assay is described that takes advantage of monoclonal antibodies against major platelet membrane constituents (glycoproteins IIb/IIIa and Ib and HLA class I molecule) to investigate selectively platelet reactive antibodies against epitopes on different glycoprotein.

870 citations


Journal ArticleDOI
11 Sep 1987-Cell
TL;DR: Using in vitro mutagenesis, it is found that deletion of 12 amino acids from this region of gp120 leads to a complete loss of binding and a single amino acid substitution in this region results in significantly decreased binding, suggesting that sequences within this region are directly involved in the binding of gp 120 to the CD4 receptor.

858 citations


Journal ArticleDOI
11 Sep 1987-Cell
TL;DR: Sedimentation studies suggest that protein-protein interactions between AP-2 and T antigen block AP- 2 binding to DNA, suggesting novel mechanisms for mediating positive and negative regulation of transcription.

Journal ArticleDOI
TL;DR: Evidence for this subdivision obtained with T-cell clones grown in vitro is reviewed and the implications of differences in function and lymphokine synthesis between the two types of cloned helper T cell are discussed.

Journal ArticleDOI
01 Nov 1987-Nature
TL;DR: The CD4 protein, even in the absence of T-cell receptor-antigen interactions, can interact directly with class II antigens to function as a cell surface adhesion molecule.
Abstract: The CD4 glycoprotein is expressed on T-helper and cytotoxic lymphocytes which are restricted to class II major histocompatibility complex (MHC) antigens on target cells1–5. Antibody inhibition studies imply that CD4 acts to increase the avidity of effector-target cell interactions6–8. These observations have led to the speculation that CD4 binds to a monomorphic class II antigen determinant, thereby augmenting low affinity T-cell receptorantigen interactions9–11. However, no direct evidence has been presented indicating that CD4 and class II molecules interact. To address this issue, we have used a vector derived from simian virus 40 (SV40)12 to express a complementary DNA (cDNA) encoding the human CD4 glycoprotein13. When CV1 cells expressing large amounts of the CD4 protein at the cell surface are incubated with human B cells bearing MHC-encoded class II molecules, they are bound tightly to the infected monolayer, whereas mutant B cells which lack class II molecules fail to bind. Furthermore, the binding reaction is specifically inhibited by anti-class II and anti-CD4 antibodies. Thus, the CD4 protein, even in the absence of T-cell receptor-antigen interactions, can interact directly with class II antigens to function as a cell surface adhesion molecule.

Journal ArticleDOI
TL;DR: Based on extensive studies in animal models as well as in humans, convincing evidence is available that antigen-sensitized and IgA-committed precursors of plasma cells from GALT are disseminated to the gut, other mucosa-associated tissues, and exocrine glands.
Abstract: The selective induction of antibodies in external secretions is desirable for the prevention of various systemic as well as predominantly mucosa-restricted infections. An enormous surface area of mucosal membranes is protected primarily by antibodies that belong, in many species, to the IgA isotype. Such antibodies are produced locally by large numbers of IgA-containing plasma cells distributed in subepithelial spaces of mucosal membranes and in the stroma of secretory glands. In humans and in some animal species, plasma-derived IgA antibodies do not enter external secretions in significant quantities and systemically administered preformed IgA antibodies would be of little use for passive immunization. Systemic administration of microbial antigens may boost an effective S-IgA immune response only in a situation whereby an immunized individual had previously encountered the same antigen by the mucosal route. Local injection of antigen in the vicinity of secretory glands is usually accompanied by an undesirable concomitant systemic response and frequently requires the addition of adjuvants that are unacceptable for administration in humans. Immunization routes that involve ingestion or possibly inhalation of antigens lead to the induction of not only local but also generalized immune responses manifested by the parallel appearance of S-Iga antibodies to ingested or inhaled antigens in secretions of glands distant from the site of immunization. Based on extensive studies in animal models as well as in humans, convincing evidence is available that antigen-sensitized and IgA-committed precursors of plasma cells from GALT are disseminated to the gut, other mucosa-associated tissues, and exocrine glands. However, due to the limited absorption of desired antigens from the gut lumen of orally immunized individuals, repeated large doses of antigens are required for an effective S-IgA response. Novel antigen delivery systems for the stimulation of such responses are currently being examined in several laboratories. Live attenuated or genetically manipulated bacteria expressing other microbial antigens have also been used for selective colonization of gut-associated lymphoid tissues. Unique antigen packaging and the use of adjuvants suitable for oral administration hold promise for an efficient antigen delivery to critical tissues in the intestine and deserve extensive exploration. The oral immunization route appears to have many advantages over systemic immunization.(ABSTRACT TRUNCATED AT 400 WORDS)

Book
01 Jan 1987
TL;DR: General features of the immune responses antigens and antigenicity destruction of foreign material, the myeloid system mactophages and antigen processing, the major histocompatibility complex, and drugs that affect the immune system.
Abstract: General features of the immune responses antigens and antigenicity destruction of foreign material - the myeloid system mactophages and antigen processing the major histocompatibility complex the tissues of the immune system lymphocytes the helper T cell response lymphokines and cytokines antibodies the genetic basis of antigen recognition the cellular basis of antibody formation the complement system effector T cell function tissue transplantation resistance to tumours tolerance and regulation of the immune system serology - the detection and measurement of antibodies immunity at body surfaces immunity in the fetus and newborn general principles of vaccination and vaccines resistance to bacteria and related organisms resistance to viruses immunity to parasites inflammation type 1 hypersensitivity erythrocyte antigens adn type 2 hypersensitivity type 3 hypersensitivity cell-mediated (type 4) hypersensitivity autoimmunity - general principles organ-specific autoimmune diseases the systemic immunological diseases primary immune deficiencies secondary immunological defects drugs that affect the immune system the phylogeny of the immune system.

Journal ArticleDOI
TL;DR: The defining of various epitopes on PrP through the use of MAbs will lead to a better understanding of the relationship of PrPs to their host precursor protein and to the infectious scrapie agent.
Abstract: Antibody response in mice to scrapie-associated fibril proteins (protease-resistant proteins [PrPs]) was generated to different epitopes depending on the source of antigen. Mice responded differently to PrPs isolated from scrapie-infected animals of homologous (mouse) versus heterologous (hamster) species. An enzyme-linked immunosorbent assay established to monitor this antibody response in mice immunized with PrPs was unable to detect such a response in scrapie-infected mice. A monoclonal antibody (MAb), 263K 3F4, derived from a mouse immunized with hamster 263K PrPs reacted with hamster but not mouse PrPs. MAb 263K 3F4 also recognized normal host protein of 33 to 35 kilodaltons in brain tissue from hamsters and humans but not from bovine, mouse, rat, sheep, or rabbit brains. This is the first demonstration of epitope differences on this host protein in different species. The defining of various epitopes on PrP through the use of MAbs will lead to a better understanding of the relationship of PrPs to their host precursor protein and to the infectious scrapie agent.

Journal ArticleDOI
TL;DR: The results suggest that IgG1 might be the favoured IgG subclass for therapeutic applications in complement-dependent hemolysis and in antibody-dependent cell-mediated cytotoxicity using both human effector and human target cells.
Abstract: Cell lines have been established that secrete a matched set of human chimeric IgM, IgG1, IgG2, IgG3, IgG4, IgE, and IgA2 antibodies that are directed against the hapten 4-hydroxy-3-nitrophenacetyl. These chimeric antibodies secreted from mouse plasmacytoma cells behave exactly like their authentic human counterparts in SDS-PAGE analysis, binding to protein A and in a wide range of serological assays. The antibodies have been compared in their ability to bind human C1q as well as in their efficacy in mediating lysis of human erythrocytes in the presence of human complement. A major conclusion to emerge is that whereas IgG3 bound C1q better than did IgG1, the chimeric IgG1 was much more effective than all the other IgG subclasses in complement-dependent hemolysis. The IgG1 antibody was also the most effective in mediating antibody-dependent cell-mediated cytotoxicity using both human effector and human target cells. These results suggest that IgG1 might be the favoured IgG subclass for therapeutic applications.

Journal ArticleDOI
TL;DR: Using monoclonal antibody technology and affinity chromatography the authors have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080, indicating that none of these receptors shared the same alpha subunits.
Abstract: Using monoclonal antibody technology and affinity chromatography we have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080. Two classes of monoclonal antibodies prepared against HT-1080 cells inhibited adhesion to extracellular matrix components. Class I antibodies inhibited cell adhesion to collagen, fibronectin, and laminin. These antibodies immunoprecipitated two noncovalently linked proteins (subunits) with molecular masses of 147 and 125 kD, termed alpha and beta, respectively. Class II antibodies inhibited cell adhesion to native collagen only and not fibronectin or laminin. Class II antibodies immunoprecipitated a single cell surface protein containing two noncovalently linked subunits with molecular masses of 145 and 125 kD, termed alpha and beta, respectively. The two classes of antibodies did not cross-react with the same cell surface protein and recognized epitopes present on the alpha subunits. Pulse-chase labeling studies with [35S]methionine indicated that neither class I nor II antigen was a metabolic precursor of the other. Comparison of the alpha and beta subunits of the class I and II antigens by peptide mapping indicated that the beta subunits were identical while the alpha subunits were distinct. In affinity chromatography experiments HT-1080 cells were extracted with Triton X-100 or octylglucoside detergents and chromatographed on insoluble fibronectin or native type I or VI collagens. A single membrane protein with the biochemical characteristics of the class I antigen was isolated on fibronectin-Sepharose and could be immunoprecipitated with the class I monoclonal antibody. The class I antigen also specifically bound to type I and VI collagens, consistent with the observation that the class I antibodies inhibit cell adhesion to types VI and I collagen and fibronectin. The class II antigen, however, did not bind to collagen (or fibronectin) even though class II monoclonal antibodies completely inhibited adhesion of HT-1080 cells to types I and III-VI collagen. The class I beta and II beta subunits were structurally related to the beta subunit of the fibronectin receptor described by others. However, none of these receptors shared the same alpha subunits. Additional membrane glycoprotein(s) with molecular mass ranges of 80-90 and 35-45 kD, termed the class III and IV receptors, respectively, bound to types I and VI collagen but not to fibronectin. Monoclonal antibodies prepared against the class III receptor had no consistent effect on cell attachment or spreading, suggesting that it is not directly involved in adhesion to collagen-coated substrates.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal ArticleDOI
01 Jan 1987-Nature
TL;DR: The genetic features and clonal composition of spontaneously derived immunoglobulin G (IG) antiself-IgG (rheumatoid factor (RF) autoantibodies derived from the autoimmune MRL/lpr mouse strain are inconsistent with both the predictions of this model and the actual outcome of experimental polyclonal activation.
Abstract: Polyclonal activation has been proposed as the reason that autoantibodies are produced during autoimmune disease. This model denies a role for specific antigen selection of B cells and predicts instead a multiclonal population of unmutated or randomly mutated autoantibodies. We have found that the genetic features and clonal composition of spontaneously derived immunoglobulin G (IgG) antiself-IgG (rheumatoid factor (RF] autoantibodies derived from the autoimmune MRL/lpr mouse strain are inconsistent with both the predictions of this model and the actual outcome of experimental polyclonal activation. Instead we have found that MRL/lpr RFs are oligoclonal or even monoclonal in origin. They harbour numerous somatic mutations which are distributed in a way that suggests immunoglobulin-receptor-dependent selection of these mutations. In this sense, the MRL/lpr RFs resemble antibodies elicited by exogenous antigens after secondary immunization. The parallels suggest that, like secondary immune responses, antigen stimulation is important in the generation of MRL/lpr RFs.

Patent
24 Sep 1987
TL;DR: In this paper, an immunometric assay for a multivalent antigen in a sample which comprises forming a complex of the antigen together with multiple immobilized monoclonal antibodies against different epitopes of the antigens and with a detectably labeled soluble antibody which is identical to one of the multiple immunized antibodies is described.
Abstract: The invention relates to an immunometric assay for a multivalent antigen in a sample which comprises forming a complex of the antigen together with multiple immobilized monoclonal antibodies against different epitopes of the antigen and with a detectably labeled soluble monoclonal antibody which is identical to one of the multiple immobilized antibodies The labeled antibody associated with the complex is separated from the remaining soluble antibody and the detectably labeled antibody associated with the complex or unassociated with the complex is detected Any one of the multiple immobilized monoclonal antibodies shows, by itself, substantially less binding towards the antigen in the immunometric assay, when used with itself or another monocolonal antibody in soluble labeled form, than when used with the multiple immobilized antibodies in combination

Journal ArticleDOI
13 Mar 1987-Science
TL;DR: The binding of peptide to purified Ia is immunologically relevant, and Ia seems to be the only saturable molecule on the surface of the accessory cell involved in antigen presentation.
Abstract: The capacity of purified I-Ad, I-Ed, I-Ak, and I-Ek to bind to protein derived peptides that have been previously reported to be T cell immunogens has been examined. For each of the 12 peptides studied strong binding to the relevant Ia restriction element was observed. All the peptides bound more than one Ia molecule; however, for 11 of 12 peptides, the dominant binding was to the restriction element, whereas in one instance the dominant binding was to a nonrestriction element. When the peptides were used to inhibit the presentation of antigen by prefixed accessory cells to T cells, an excellent correlation was found between the capacity of a peptide to inhibit the binding of an antigen to purified Ia and the capacity of the peptide to inhibit accessory cell presentation of the antigen. Thus, the binding of peptide to purified Ia is immunologically relevant, and Ia seems to be the only saturable molecule on the surface of the accessory cell involved in antigen presentation. Inhibition analysis also indicated that all peptides restricted to a particular Ia molecule competitively inhibited one another, suggesting that each Ia restriction element has a single binding site for antigen. Cross-linking of labeled peptides to Ia followed by electrophoretic analysis and autoradiography suggested that this single binding site is made up of portions of both alpha and beta chains of Ia.

Journal ArticleDOI
TL;DR: Microglial cells isolated from brain cell cultures of newborn mice were characterized and investigated for morphology, their responses to growth factors and their functional properties, and taken together they share the characteristics of cells of the macrophage lineage.
Abstract: In this study microglial cells isolated from brain cell cultures of newborn mice were characterized and investigated for morphology, their responses to growth factors and their functional properties. The microglial cells were phagocytic, contained nonspecific esterase activity and expressed Fc (IgG1/2b) and type-3 complement receptors. Scanning electron microscopy revealed that in analogy to brain tissue two types of microglial cells are present in the cultures: the ameboid and the ramified type which both display similar appearance by transmission electron microscopy. Interleukin 3 and the granulocyte-macrophage colony-stimulating factor were potent growth factors for the cultured microglial cells. The cells were negative for class II antigens (Ia) of the major histocompatibility antigen complex. However, upon treatment with interferon-γ (IFN-γ) microglial cells became Ia+ and functioned as antigen-presenting cells when tested on ovalbumin-specific Ia-restricted helper T cells. Furthermore, microglial cells exposed to IFN-γ and endotoxin developed tumor cell cytotoxicity and produced tumor necrosis factor α. Taken together, microglial cells share the characteristics of cells of the macrophage lineage.

Journal ArticleDOI
18 Dec 1987-Science
TL;DR: In this paper, soluble, secreted forms of CD4 were produced by transfection of mammalian cells with vectors encoding versions of CD 4 lacking its transmembrane and cytoplasmic domains.
Abstract: The initial event in the infection of human T lymphocytes, macrophages, and other cells by human immunodeficiency virus (HIV-1) is the attachment of the HIV-1 envelope glycoprotein gp120 to its cellular receptor, CD4. As a step toward designing antagonists of this binding event, soluble, secreted forms of CD4 were produced by transfection of mammalian cells with vectors encoding versions of CD4 lacking its transmembrane and cytoplasmic domains. The soluble CD4 so produced binds gp120 with an affinity and specificity comparable to intact CD4 and is capable of neutralizing the infectivity of HIV-1. These studies reveal that the high-affinity CD4-gp120 interaction does not require other cell or viral components and may establish a novel basis for therapeutic intervention in the acquired immune deficiency syndrome (AIDS).

Journal ArticleDOI
TL;DR: It is shown that antibodies capable of inhibiting human lymphocyte binding to one or more HEV types recognize a common 85- 95-kD lymphocyte surface glycoprotein antigen, defined by the non- blocking monoclonal antibody, Hermes-1, which implies that related molecular mechanisms are involved in several functionally independent cell-cell recognition events that direct lymphocyte traffic.
Abstract: The tissue-specific homing of lymphocytes is directed by specialized high endothelial venules (HEV). At least three functionally independent lymphocyte/HEV recognition systems exist, controlling the extravasation of circulating lymphocytes into peripheral lymph nodes, mucosal lymphoid tissues (Peyer9s patches or appendix), and the synovium of inflamed joints. We report here that antibodies capable of inhibiting human lymphocyte binding to one or more HEV types recognize a common 85-95-kD lymphocyte surface glycoprotein antigen, defined by the non-blocking monoclonal antibody, Hermes-1. We demonstrate that MEL-14, a monoclonal antibody against putative lymph node "homing receptors" in the mouse, functionally inhibits human lymphocyte binding to lymph node HEV but not to mucosal or synovial HEV, and cross-reacts with the 85-95-kD Hermes-1 antigen. Furthermore, we show that Hermes-3, a novel antibody produced by immunization with Hermes-1 antigen isolated from a mucosal HEV-specific cell line, selectively blocks lymphocyte binding to mucosal HEV. Such tissue specificity of inhibition suggests that MEL-14 and Hermes-3 block the function of specific lymphocyte recognition elements for lymph node and mucosal HEV, respectively. Recognition of synovial HEV also involves the 85-95-kD Hermes-1 antigen, in that a polyclonal antiserum produced against the isolated antigen blocks all three classes of lymphocyte-HEV interaction. From these studies, it is likely that the Hermes-1-defined 85-95-kD glycoprotein class either comprises a family of related but functionally independent receptors for HEV, or associates both physically and functionally with such receptors. The findings imply that related molecular mechanisms are involved in several functionally independent cell-cell recognition events that direct lymphocyte traffic.

Journal ArticleDOI
TL;DR: It is speculated that low amounts of FITC binding selectively to veiled cells or lymph node DC in the first hours after exposure to antigen are not immunogenic but that Langerhans' cells acquire high levels of antigen, enter the nodes, and initiate immune responses.
Abstract: We have examined the cells involved in the development of contact sensitivity to FITC in CBA mice. After skin painting with antigen, the number of dendritic cells (DC) in the draining lymph nodes increased by 30 min, was maximal at 48 h, and returned to normal by 6 d. Derivation of some DC from Langerhans' cells of the skin was indicated from the presence of Birbeck granules observed in some DC isolated 24 h after skin painting. The DC acquired FITC and by 8 h there were two populations, one highly fluorescent and the other less fluorescent. The highly fluorescent cells were present between 8 h and 3 d after sensitization, and during this period the DC were potent at initiating primary proliferative responses of normal syngeneic T lymphocytes in vitro. Between days 3 and 5 the numbers of lymphocytes in the draining lymph node increased. During this period purified T lymphocytes did not express detectable levels of antigen, but enriched B cell populations expressed antigen transiently on day 1, 2, or 3 after exposure to antigen. The results showed that, during a 3-d period after exposure to antigen, DC expressed antigen and stimulated T cell proliferation. We speculate that low amounts of FITC binding selectively to veiled cells or lymph node DC in the first hours after exposure to antigen are not immunogenic but that Langerhans' cells acquire high levels of antigen, enter the nodes, and initiate immune responses.

Journal Article
TL;DR: The hypothesis that stable amphipathic helices are fundamentally important in determining immunodominance is supported, and this approach may be of practical value in designing synthetic vaccines aimed at T cell immunity.
Abstract: We have used a data base of 23 known immunodominant helper T cell antigenic sites located on 12 proteins to systematically develop an optimized algorithm for predicting T cell antigenic sites. The algorithm is based on the amphipathic helix model in which antigenic sites are postulated to be helices with one face predominantly polar and the opposite face predominantly apolar. Such amphipathic structures can form when the polarity of residues along the sequence varies with a more or less regular period. Hence they can be identified by methods (so called power spectrum procedures) that detect periodic variations in properties of a sequence. The choice of power spectrum procedure, hydrophobicity scale, and model parameters are examined. An algorithm is tested by comparing the predicted amphipathic segments with the locations of the known T cell sites, counting the number of matches, and calculating the probability of getting this number by chance alone. The optimum algorithm, which predicts the largest number of sites with the lowest chance probability, uses the Fauchere-Pliska hydrophobicity scale and a least squares fit of a sinusoid as its power spectrum procedure. By applying this algorithm, 18 of the 23 known sites are identified (75% sensitivity) with a high degree of significance (p less than 0.001). The success of the algorithm supports the hypothesis that stable amphipathic helices are fundamentally important in determining immunodominance. This approach may be of practical value in designing synthetic vaccines aimed at T cell immunity.

Journal Article
TL;DR: The availability of a recombinant form of the 70 kd mitochondrial autoantigen will allow several definitive questions to be addressed in PBC, including identification of B cell epitopes, T cell recognition, and a model of PBC in mice.
Abstract: Mitochondrial autoantibodies are characteristic of the disease primary biliary cirrhosis (PBC), but the immunoreactive mitochondrial antigens have not been defined. We used a rat liver cDNA library in lambda gt 11-Amp3 to clone a 1370-base pair insert that coded for a polypeptide reactive with PBC sera. This insert was subcloned for expression into pBTA224, a plasmid vector in the same reading frame as lambda-Amp3. A positive clone, designated pRMIT, that expressed a fused polypeptide of 160 kd, was recognized by 25 of 25 sera from patients with PBC and none of 96 sera from normal persons or patients with systemic lupus erythematosus, rheumatoid arthritis, or chronic active hepatitis. This fused polypeptide was shown to correspond with the 70 kd mitochondrial autoantigen by several experiments. First, lysates of pRMIT in J101 absorbed out the 70 kd reactivity of PBC sera when probed against fractionated placental mitochondria. Second, affinity-purified antisera reactive with the fused polypeptide also reacted with the 70 kd mitochondrial antigen. Third, such affinity-purified antisera produced the characteristic anti-mitochondrial pattern of immunofluorescence on tissue sections. Finally, immunization of BALB/c mice with the fused polypeptide elicited antibodies to mitochondria. These murine antibodies reacted with the 70 kd mitochondrial protein and also produced typical mitochondrial immunofluorescence on tissue sections. The nucleotide and amino acid sequence of the recombinant protein, which encodes for approximately a 48 kd protein, showed no significant homologies with known proteins, and there were no homologies with mitochondrial genomic DNA. The availability of a recombinant form of the 70 kd mitochondrial autoantigen will allow several definitive questions to be addressed in PBC, including identification of B cell epitopes, T cell recognition, and a model of PBC in mice.

Journal ArticleDOI
TL;DR: Two distinct proteins identical to those already identified on the leukemic cells could be crosslinked covalently to radiolabeled IL-2, both of which are required for high- affinity IL- 2 binding.
Abstract: A cell line established from a patient with acute lymphoblastic leukemia was found to express IL-2 binding sites with a novel, intermediate affinity compared with the characteristic high-affinity IL-2-receptors and low-affinity IL-2 binding sites described previously. Clones were isolated from this cell line that displayed solely this new IL-2-binding protein, and were found to be unreactive with anti-Tac, the mAb that competes with IL-2 for binding. Moreover, these same cloned cells did not express mRNA detectable by hybridization with radiolabeled cDNA encoding the Tac protein. In contrast, the original cell line and similar clones expressed low levels of Tac mRNA and cell surface Tac antigen, both of which could be augmented by exposure to medium conditioned by adult T leukemia cell lines. Particularly noteworthy, induction of Tac antigen expression was paralleled by an increase in the number of high-affinity IL-2-R detectable. Since the expression of the Tac antigen protein by itself makes only for low-affinity IL-2 binding, these data prompted a reevaluation of the structural composition of high-affinity IL-2-R. Analysis of the IL-2-binding proteins expressed by leukemic cell lines lacking high-affinity receptors revealed only a single protein, larger than the Tac antigen protein (Mr = 75,000 vs. 55,000). In contrast, clones induced to express high-affinity receptors had clearly both of these IL-2-binding proteins. Moreover, when IL-2 binding to normal T cells was performed under conditions that favored the proportion of high-affinity receptors occupied, two distinct proteins identical to those already identified on the leukemic cells could be crosslinked covalently to radiolabeled IL-2. The interpretations derived from these varied, assembled data, point to two IL-2-binding proteins, both of which are required for high-affinity IL-2 binding.

Journal Article
TL;DR: Ex expression of Pgp-1 among peripheral T cells is an important differentiation marker for identifying antigen-stimulated memory T cells and a model consistent with all of these data proposes that mature thymocytes lacking surface P gp-1 upon emigration to the periphery acquire its expression at the time of primary antigenic stimulation.
Abstract: The Pgp-1 glycoprotein was identified on a minor (27%) subset of peripheral Lyt-2+ or L3T4+ T cells. In contrast, mature medullary-type thymocytes (Lyt-2+ L3T4-, Lyt-2- L3T4+) were nearly devoid of cells expressing detectable surface Pgp-1. The appearance of peripheral Pgp-1- T cells was found to be thymus dependent, as demonstrated by the diminished proportion of Pgp-1- T cells after thymectomy and their virtual absence in athymic nude mice. The subsequent acquisition of surface Pgp-1 was found to be a stable differentiation event occurring concomitantly with primary antigenic stimulation; selected Pgp-1- mature T cells from thymus or periphery acquired constitutive expression of Pgp-1 after stimulation in vitro with alloantigen or mitogens. These observations were extended by studies in vivo showing that immunization with various antigens augmented the percentage of Pgp-1+ spleen cells within the Lyt-2+ subset. Furthermore, the frequencies of antigen-specific CTLp, after immunization by any of three different antigens tested, were greatly enriched in the Pgp-1+ compared with the Pgp-1- subpopulations. Peritoneal exudate Lyt-2+ cells, after a localized allograft rejection, demonstrated a particularly prominent Pgp-1+ subpopulation (78%) that contained virtually all the allospecific cytolytic activity. A model consistent with all of these data proposes that mature thymocytes lacking surface Pgp-1 upon emigration to the periphery acquire its expression at the time of primary antigenic stimulation. Hence, expression of Pgp-1 among peripheral T cells is an important differentiation marker for identifying antigen-stimulated memory T cells.

Journal Article
TL;DR: It is demonstrated that the melanoma-bearing patient raises an immune response against autologous tumor and a method for the generation of human lymphocytes with antitumor reactivity that may be useful in the adoptive immunotherapy of tumors is presented.
Abstract: Tumor-infiltrating lymphocytes from six patients with metastatic malignant melanoma were expanded by culture in recombinant interleukin 2. Three of the preparations were highly cytotoxic against autologous fresh melanoma tumor cells, but not against autologous fresh normal cells or allogeneic fresh tumor targets. The other three were highly cytotoxic against autologous fresh melanoma tumor cells and also had a limited capacity to kill allogeneic fresh tumor targets. The tumor-associated specific killer cells could be expanded from threefold to 95,652-fold with maintenance of specific antitumor lysis. The expanded tumor-infiltrating cells were Leu-4+ T cells, and in five of six patients the majority were Leu-3+. These studies demonstrate that the melanoma-bearing patient raises an immune response against autologous tumor and presents a method for the generation of human lymphocytes with antitumor reactivity that may be useful in the adoptive immunotherapy of tumors.