scispace - formally typeset
Search or ask a question

Showing papers on "Efficient energy use published in 2009"


Journal Article
TL;DR: S-MAC as discussed by the authors is a medium access control protocol designed for wireless sensor networks, which uses three novel techniques to reduce energy consumption and support self-configuration, including virtual clusters to auto-sync on sleep schedules.
Abstract: This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s.

5,354 citations


Journal ArticleDOI
01 May 2009
TL;DR: This paper breaks down the energy consumption for the components of a typical sensor node, and discusses the main directions to energy conservation in WSNs, and presents a systematic and comprehensive taxonomy of the energy conservation schemes.
Abstract: In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. In this paper we first break down the energy consumption for the components of a typical sensor node, and discuss the main directions to energy conservation in WSNs. Then, we present a systematic and comprehensive taxonomy of the energy conservation schemes, which are subsequently discussed in depth. Special attention has been devoted to promising solutions which have not yet obtained a wide attention in the literature, such as techniques for energy efficient data acquisition. Finally we conclude the paper with insights for research directions about energy conservation in WSNs.

2,546 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date review of the various modeling techniques used for modeling residential sector energy consumption, focusing on the strengths, shortcomings and purposes.
Abstract: There is a growing interest in reducing energy consumption and the associated greenhouse gas emissions in every sector of the economy. The residential sector is a substantial consumer of energy in every country, and therefore a focus for energy consumption efforts. Since the energy consumption characteristics of the residential sector are complex and inter-related, comprehensive models are needed to assess the technoeconomic impacts of adopting energy efficiency and renewable energy technologies suitable for residential applications. The aim of this paper is to provide an up-to-date review of the various modeling techniques used for modeling residential sector energy consumption. Two distinct approaches are identified: top-down and bottom-up. The top-down approach treats the residential sector as an energy sink and is not concerned with individual end-uses. It utilizes historic aggregate energy values and regresses the energy consumption of the housing stock as a function of top-level variables such as macroeconomic indicators (e.g. gross domestic product, unemployment, and inflation), energy price, and general climate. The bottom-up approach extrapolates the estimated energy consumption of a representative set of individual houses to regional and national levels, and consists of two distinct methodologies: the statistical method and the engineering method. Each technique relies on different levels of input information, different calculation or simulation techniques, and provides results with different applicability. A critical review of each technique, focusing on the strengths, shortcomings and purposes, is provided along with a review of models reported in the literature.

1,748 citations


Journal ArticleDOI
TL;DR: This work uses a behavioral approach to examine the reasonably achievable potential for near-term reductions by altered adoption and use of available technologies in US homes and nonbusiness travel and estimates the plasticity of 17 household action types in 5 behaviorally distinct categories.
Abstract: Most climate change policy attention has been addressed to long-term options, such as inducing new, low-carbon energy technologies and creating cap-and-trade regimes for emissions. We use a behavioral approach to examine the reasonably achievable potential for near-term reductions by altered adoption and use of available technologies in US homes and nonbusiness travel. We estimate the plasticity of 17 household action types in 5 behaviorally distinct categories by use of data on the most effective documented interventions that do not involve new regulatory measures. These interventions vary by type of action and typically combine several policy tools and strong social marketing. National implementation could save an estimated 123 million metric tons of carbon per year in year 10, which is 20% of household direct emissions or 7.4% of US national emissions, with little or no reduction in household well-being. The potential of household action deserves increased policy attention. Future analyses of this potential should incorporate behavioral as well as economic and engineering elements.

1,226 citations


Journal ArticleDOI
TL;DR: The biofuel policy aims to promote the use in transport of fuels made from biomass, as well as other renewable fuels as mentioned in this paper, which provides the prospect of new economic opportunities for people in rural areas in oil importer and developing countries.

981 citations


Journal ArticleDOI
TL;DR: Inorganic solid-state materials doped with rare-earth ions are very promising and are in the focus of current research activities for the development of economical light sources like white-light-emitting diodes and display panels with enhanced efficiency.
Abstract: Because fossil fuels are becoming scarce and because of the expected climate change, our standard of living can only be maintained by a significant increase in energy efficiency. Large amounts of energy are consumed for lighting and during operation of displays. Thus, the targets are the development of economical light sources like white-light-emitting diodes and display panels with enhanced efficiency. Solar energy is converted into electricity by solar cells, and their efficiency must be improved considerably. A possible contribution might be delivered by phosphors which allow the conversion of thermal radiation into electrical energy. Although the target of energy efficiency is very important, we must not overlook that medical imaging diagnostic methods require efficient and sensitive detectors. For the solution of these central questions, inorganic solid-state materials doped with rare-earth ions are very promising and are therefore in the focus of current research activities.

944 citations


Journal ArticleDOI
TL;DR: This paper focuses on a protocol stack solution that deals with MAC layer, that minimizes the energy consumption and delay required to transmit packets across the network, called Adaptive SMAC protocol designed for sensor networks.
Abstract: Sensor networks are deployed in remote locations with limited processor capabilities, memory capacities, and battery supplies. Wireless Sensor Networks (WSN) detects environmental information with sensors in remote settings. One problem facing WSNs is the inability to resupply power to these energy-constrained devices due to their remoteness. Therefore to extend a WSN's effectiveness, the lifetime of the network must be increased by making them as energy efficient as possible. An energy-efficient medium access control (MAC) can boost a WSN's lifetime. This paper focuses on a protocol stack solution that deals with MAC layer, that minimizes the energy consumption and delay required to transmit packets across the network. It is based on Sensor Medium Access Control (S-MAC) called Adaptive SMAC protocol designed for sensor networks. It enables low duty cycle operation in a multi-hop network and common sleep schedules to reduce control overhead and enable traffic adaptive wakeup. To reduce control overhead and latency, introduces coordinated sleeping among neighboring nodes. It is a contention based protocol based on CSMA/CA mechanism. This protocol is simulated in NS-2 and performance evaluated using various topologies under various traffic conditions. In addition with this we tried to improve the energy efficiency of Adaptive SMAC with the help of a new design called Adaptive Cross MAC protocol

797 citations


Journal ArticleDOI
TL;DR: This paper introduces an energy efficient heterogeneous clustered scheme for wireless sensor networks based on weighted election probabilities of each node to become a cluster head according to the residual energy in each node.

727 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the main aspects of the DMG framework, illustrating its characteristics and summarizing the relevant DMG structures, backed by an extended review of the most recent journal publications and reports.
Abstract: The recent development of efficient thermal prime movers for distributed generation is changing the focus of the production of electricity from large centralized power plants to local generation units scattered over the territory. The scientific community is addressing the analysis and planning of distributed energy resources with widespread approaches, taking into account technical, environmental, economic and social issues. The coupling of cogeneration systems to absorption/electric chillers or heat pumps, as well as the interactions with renewable sources, allow for setting up multi-generation systems for combined local production of different energy vectors such as electricity, heat (at different enthalpy levels), cooling power, hydrogen, various chemical substances, and so forth. Adoption of composite multi-generation systems may lead to significant benefits in terms of higher energy efficiency, reduced CO2 emissions, and enhanced economy. In this light, a key direction for improving the characteristics of the local energy production concerns the integration of the concepts of distributed energy resources and combined production of different energy vectors into a comprehensive distributed multi-generation (DMG) framework that entails various approaches to energy planning currently available in the literature. This paper outlines the main aspects of the DMG framework, illustrating its characteristics and summarizing the relevant DMG structures. The presentation is backed by an extended review of the most recent journal publications and reports.

638 citations


Proceedings ArticleDOI
01 Sep 2009
TL;DR: The results suggest, that for scenarios with full traffic load, the use of micro base stations has a rather moderate effect on the area power consumption of a cellular network.
Abstract: In the strive for lessening of the environmental impact of the information and communication industry, energy consumption of communication networks has recently received increased attention. Although cellular networks account for a rather small share of energy use, lowering their energy con- sumption appears beneficial from an economical perspective. In this regard, the deployment of small, low power base stations, alongside conventional sites is often believed to greatly lower the energy consumption of cellular radio networks. This paper investigates on the impact of deployment strategies on the power consumption of mobile radio networks. We consider layouts featuring varying numbers of micro base stations per cell in addition to conventional macro sites. We introduce the concept of area power consumption as a system performance metric and employ simulations to evaluate potential improvements of this metric through the use of micro base stations. The results suggest, that for scenarios with full traffic load, the use of micro base stations has a rather moderate effect on the area power consumption of a cellular network.

620 citations


Journal ArticleDOI
TL;DR: In this article, the current state of the design, operation and control requirement of the stand-alone PV solar-wind hybrid energy systems with conventional backup source i.e. diesel or grid.
Abstract: The wind and solar energy are omnipresent, freely available, and environmental friendly. The wind energy systems may not be technically viable at all sites because of low wind speeds and being more unpredictable than solar energy. The combined utilization of these renewable energy sources are therefore becoming increasingly attractive and are being widely used as alternative of oil-produced energy. Economic aspects of these renewable energy technologies are sufficiently promising to include them for rising power generation capability in developing countries. A renewable hybrid energy system consists of two or more energy sources, a power conditioning equipment, a controller and an optional energy storage system. These hybrid energy systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. Research and development efforts in solar, wind, and other renewable energy technologies are required to continue for, improving their performance, establishing techniques for accurately predicting their output and reliably integrating them with other conventional generating sources. The aim of this paper is to review the current state of the design, operation and control requirement of the stand-alone PV solar–wind hybrid energy systems with conventional backup source i.e. diesel or grid. This Paper also highlights the future developments, which have the potential to increase the economic attractiveness of such systems and their acceptance by the user.

Journal ArticleDOI
TL;DR: The authors provide an economic perspective on the range of market barriers, market failures, and behavioral failures that have been cited in the energy efficiency context and assess the extent to which these conditions provide a motivation for policy intervention in energy-using product markets, including an examination of the evidence on policy effectiveness and cost.
Abstract: Energy efficiency and conservation are considered key means for reducing greenhouse gas emissions and achieving other energy policy goals, but associated market behavior and policy responses have engendered debates in the economic literature. We review economic concepts underlying consumer decision making in energy efficiency and conservation and examine related empirical literature. In particular, we provide an economic perspective on the range of market barriers, market failures, and behavioral failures that have been cited in the energy efficiency context. We assess the extent to which these conditions provide a motivation for policy intervention in energy-using product markets, including an examination of the evidence on policy effectiveness and cost. Although theory and empirical evidence suggests there is potential for welfare-enhancing energy efficiency policies, many open questions remain, particularly relating to the extent of some key market and behavioral failures.

Journal ArticleDOI
TL;DR: In this paper, the authors conducted a re-analysis of data supplied by the New Buildings Institute and the US Green Buildings Council on measured energy use data from 100 LEED-certified commercial and institutional buildings.

Proceedings ArticleDOI
22 Jun 2009
TL;DR: A novel design framework for an Energy Efficient Mobile Sensing System (EEMSS) that automatically recognizes a set of users' daily activities in real time using sensors on an off-the-shelf high-end smart phone and significantly improves device battery life.
Abstract: Urban sensing, participatory sensing, and user activity recognition can provide rich contextual information for mobile applications such as social networking and location-based services. However, continuously capturing this contextual information on mobile devices consumes huge amount of energy. In this paper, we present a novel design framework for an Energy Efficient Mobile Sensing System (EEMSS). EEMSS uses hierarchical sensor management strategy to recognize user states as well as to detect state transitions. By powering only a minimum set of sensors and using appropriate sensor duty cycles EEMSS significantly improves device battery life. We present the design, implementation, and evaluation of EEMSS that automatically recognizes a set of users' daily activities in real time using sensors on an off-the-shelf high-end smart phone. Evaluation of EEMSS with 10 users over one week shows that our approach increases the device battery life by more than 75% while maintaining both high accuracy and low latency in identifying transitions between end-user activities.

Journal ArticleDOI
TL;DR: In this article, the authors present a network-based model of power consumption in optical IP networks and use this model to estimate the energy consumption of the Internet, including the core, metro and edge, access and video distribution networks, and take into account energy consumption in switching and transmission equipment.
Abstract: As community concerns about global energy consumption grow, the power consumption of the Internet is becoming an issue of increasing importance. In this paper, we present a network-based model of power consumption in optical IP networks and use this model to estimate the energy consumption of the Internet. The model includes the core, metro and edge, access and video distribution networks, and takes into account energy consumption in switching and transmission equipment. We include a number of access technologies, including digital subscriber line with ADSL2+, fiber to the home using passive optical networks, fiber to the node combined with very high-speed digital subscriber line and point-to-point optical systems. In addition to estimating the power consumption of today's Internet, we make predictions of power consumption in a future higher capacity Internet using estimates of improvements in efficiency in coming generations of network equipment. We estimate that the Internet currently consumes about 0.4% of electricity consumption in broadband-enabled countries. While the energy efficiency of network equipment will improve, and savings can be made by employing optical bypass and multicast, the power consumption of the Internet could approach 1% of electricity consumption as access rates increase. The energy consumption per bit of data on the Internet is around 75\bm muJ at low access rates and decreases to around 2-4 \bm muJ at an access rate of 100 Mb/s.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on minimizing the energy consumption of an IP over WDM network and develop efficient approaches ranging from mixed integer linear programming (MILP) models to heuristics.
Abstract: As the Internet expands in reach and capacity, the energy consumption of network equipment increases. To date, the cost of transmission and switching equipment has been considered to be the major barrier to growth of the Internet. But energy consumption rather than cost of the component equipment may eventually become a barrier to continued growth. Research efforts on ldquogreening the Internetrdquo have been initiated in recent years, aiming to develop energy-efficient network architectures and operational strategies so as to reduce the energy consumption of the Internet. The direct benefits of such efforts are to reduce the operational costs in the network and cut the greenhouse footprint of the network. Second, from an engineering point of view, energy efficiency will assist in reducing the thermal issues associated with heat dissipation in large data centers and switching nodes. In the present research, we concentrate on minimizing the energy consumption of an IP over WDM network. We develop efficient approaches ranging from mixed integer linear programming (MILP) models to heuristics. These approaches are based on traditional virtual-topology and traffic grooming designs. The novelty of the framework involves the definition of an energy-oriented model for the IP over WDM network, the incorporation of the physical layer issues such as energy consumption of each component and the layout of optical amplifiers in the design, etc. Extensive optimization and simulation studies indicate that the proposed energy-minimized design can significantly reduce energy consumption of the IP over WDM network, ranging from 25% to 45%. Moreover, the proposed designs can also help equalize the power consumption at each network node. This is useful for real network deployment, in which each node location may be constrained by a limited electricity power supply. Finally, it is also interesting and useful to find that an energy-efficient network design is also a cost-efficient design because of the fact that IP router ports play a dominating role in both energy consumption and network cost in the IP over WDM network.

Journal ArticleDOI
TL;DR: In this article, the authors provide a brief development history of LEDs and a broad base review on LED applications in indoor plant cultivation since 1990, and present the potential of LED as an effective light source for indoor agricultural production have been explored to a great extent.
Abstract: The rapid development of optoelectronic technology since mid-1980 has significantly enhanced the brightness and efficiency of light-emitting diodes (LEDs). LEDs have long been proposed as a primary light source for space-based plant research chamber or bioregenerative life support systems. The raising cost of energy also makes the use of LEDs in commercial crop culture imminent. With their energy efficiency, LEDs have opened new perspectives for optimizing the energy conversion and the nutrient supply both on and off Earth. The potentials of LED as an effective light source for indoor agricultural production have been explored to a great extent. There are many researches that use LEDs to support plant growth in controlled environments such as plant tissue culture room and growth chamber. This paper provides a brief development history of LEDs and a broad base review on LED applications in indoor plant cultivation since 1990.

Book ChapterDOI
11 May 2009
TL;DR: The hurdles in network power instrumentation are described and a power measurement study of a variety of networking gear such as hubs, edge switches, core switches, routers and wireless access points in both stand-alone mode and a production data center are presented.
Abstract: Energy efficiency is becoming increasingly important in the operation of networking infrastructure, especially in enterprise and data center networks. Researchers have proposed several strategies for energy management of networking devices. However, we need a comprehensive characterization of power consumption by a variety of switches and routers to accurately quantify the savings from the various power savings schemes. In this paper, we first describe the hurdles in network power instrumentation and present a power measurement study of a variety of networking gear such as hubs, edge switches, core switches, routers and wireless access points in both stand-alone mode and a production data center. We build and describe a benchmarking suite that will allow users to measure and compare the power consumed for a large set of common configurations at any switch or router of their choice. We also propose a network energy proportionality index, which is an easily measurable metric, to compare power consumption behaviors of multiple devices.

Proceedings ArticleDOI
01 Dec 2009
TL;DR: An energy consumption model for VoD in traditional and in NaDa data centers is developed and it is found that even under the most pessimistic scenarios, NaDa saves at least 20% to 30% of the energy compared to traditional data centers.
Abstract: Motivated by increased concern over energy consumption in modern data centers, we propose a new, distributed computing platform called Nano Data Centers (NaDa). NaDa uses ISP-controlled home gateways to provide computing and storage services and adopts a managed peer-to-peer model to form a distributed data center infrastructure. To evaluate the potential for energy savings in NaDa platform we pick Video-on-Demand (VoD) services. We develop an energy consumption model for VoD in traditional and in NaDa data centers and evaluate this model using a large set of empirical VoD access data. We find that even under the most pessimistic scenarios, NaDa saves at least 20% to 30% of the energy compared to traditional data centers. These savings stem from energy-preserving properties inherent to NaDa such as the reuse of already committed baseline power on underutilized gateways, the avoidance of cooling costs, and the reduction of network energy consumption as a result of demand and service co-localization in NaDa.

Journal ArticleDOI
TL;DR: In this article, preliminary energy and exergy efficiency analyses are performed for a photovoltaic-hydrogen/fuel cell hybrid energy system in Denizli, Turkey, and three different energy demand paths are considered.

Book
01 Jan 2009
TL;DR: In this paper, the authors explain how sensors, communications technologies, computational ability, control, and feedback mechanisms can be effectively combined to create a new, continually adjusting "smart grid" system.
Abstract: The power system has often been cited as the greatest and most complex machine ever built, yet it is predominantly a mechanical system. Technologies and intelligent systems are now available that can significantly enhance the overall functionality of power distribution and make it ready to meet the needs of the 21st century. This book explains how sensors, communications technologies, computational ability, control, and feedback mechanisms can be effectively combined to create this new, continually adjusting "smart grid" system. It provides an understanding of both IntelliGridSM architecture and EnergyPortSM as well as how to integrate intelligent systems to achieve the goals of reliability, cost containment, energy efficiency in power production and delivery, and end-use energy efficiency.

Journal ArticleDOI
TL;DR: In this article, the origin and the historic development of energy certification schemes in buildings along with the definition and scope of a building energy certificate and critical aspects of its implementation are discussed.

Journal ArticleDOI
TL;DR: In this paper, the potential contribution of industrial energy-efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030 is discussed, where the authors propose a framework to evaluate the potential of these technologies for mitigating greenhouse gas emission from industry.
Abstract: Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy-efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Proceedings ArticleDOI
02 Nov 2009
TL;DR: Results indicate that EWT is an effective and practical scheme to improve the energy efficiency of a STT-RAM cache, and up to 80% of write energy reduction can be achieved through EWT.
Abstract: The emerging Spin Torque Transfer memory (STT-RAM) is a promising candidate for future on-chip caches due to STT-RAM's high density, low leakage, long endurance and high access speed. However, one of the major challenges of STT-RAM is its high write current, which is disadvantageous when used as an on-chip cache since the dynamic power generated is too high. In this paper, we propose Early Write Termination (EWT), a novel technique to significantly reduce write energy with no performance penalty. EWT can be implemented with low complexity and low energy overhead. Our evaluation shows that up to 80% of write energy reduction can be achieved through EWT, resulting 33% less total energy consumption, and 34% reduction in ED2. These results indicate that EWT is an effective and practical scheme to improve the energy efficiency of a STT-RAM cache.

Journal IssueDOI
01 Apr 2009
TL;DR: This article presents a comprehensive overview of recent advances in cross-layer design for energy-efficient wireless communications, particularly focus on a system-based approaches toward energy optimal transmission and resource management across time, frequency, and spatial domains.
Abstract: Since battery technology has not progressed as rapidly as semiconductor technology, power efficiency has become increasingly important in wireless networking, in addition to the traditional quality and performance measures, such as bandwidth, throughput, and fairness. Energy-efficient design requires a cross layer approach as power consumption is affected by all aspects of system design, ranging from silicon to applications. This article presents a comprehensive overview of recent advances in cross-layer design for energy-efficient wireless communications. We particularly focus on a system-based approaches toward energy optimal transmission and resource management across time, frequency, and spatial domains. Details related to energy-efficient hardware implementations are also covered. Copyright © 2008 John Wiley & Sons, Ltd.

Proceedings ArticleDOI
Bo Li1, Jianxin Li1, Jinpeng Huai1, Tianyu Wo1, Qin Li1, Liang Zhong1 
21 Sep 2009
TL;DR: In EnaCloud, a novel approach is proposed, which enables application live placement dynamically with consideration of energy efficiency in a cloud platform, which uses a Virtual Machine to encapsulate the application, and an energy-aware heuristic algorithm is proposed to get an appropriate solution.
Abstract: With the increasing prevalence of large scale cloud computing environments, how to place requested applications into available computing servers regarding to energy consumption has become an essential research problem, but existing application placement approaches are still not effective for live applications with dynamic characters. In this paper, we proposed a novel approach named EnaCloud, which enables application live placement dynamically with consideration of energy efficiency in a cloud platform. In EnaCloud, we use a Virtual Machine to encapsulate the application, which supports applications scheduling and live migration to minimize the number of running machines, so as to save energy. Specially, the application placement is abstracted as a bin packing problem, and an energy-aware heuristic algorithm is proposed to get an appropriate solution. In addition, an over-provision approach is presented to deal with the varying resource demands of applications. Our approach has been successfully implemented as useful components and fundamental services in the iVIC platform. Finally, we evaluate our approach by comprehensive experiments based on virtual machine monitor Xen and the results show that it is feasible.

Journal ArticleDOI
26 Aug 2009-PLOS ONE
TL;DR: In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific.
Abstract: Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9–2.8 km2/TW hr/yr for nuclear power to 788–1000 km2/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km2 will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km2 per TW hr of electricity conserved annually and 27.5 km2 per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets.

Proceedings ArticleDOI
03 Nov 2009
TL;DR: In this article, the authors report on the deployment of a wireless camera sensor network for collecting data regarding occupancy in a large multi-function building The system estimates occupancy with an accuracy of 80% using data collected from this system, they construct multivariate Gaussian and agent based models for predicting user mobility patterns in buildings Using these models, they can predict room usage thereby enabling them to control the HVAC systems in an adaptive manner.
Abstract: Current climate control systems often rely on building regulation maximum occupancy numbers for maintaining proper temperatures However, in many situations, there are rooms that are used infrequently, and may be heated or cooled needlessly Having knowledge regarding occupancy and being able to accurately predict usage patterns may allow significant energy-savings by intelligent control of the L-HVAC systems In this paper, we report on the deployment of a wireless camera sensor network for collecting data regarding occupancy in a large multi-function building The system estimates occupancy with an accuracy of 80% Using data collected from this system, we construct multivariate Gaussian and agent based models for predicting user mobility patterns in buildings Using these models, we can predict room usage thereby enabling us to control the HVAC systems in an adaptive manner Our simulations indicate a 14% reduction in HVAC energy usage by having an optimal control strategy based on occupancy estimates and usage patterns

Journal ArticleDOI
TL;DR: A good knowledge on dynamic characteristics and energy performance of buildings using PCM is essential for building researchers and practitioners to better understand building temperature response characteristics and economic feasibility of using PCMs and take further proper actions to fully utilize PCMs to enhance indoor environmental quality and overall energy efficiency of buildings as mentioned in this paper.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the life cycle of corn-ethanol systems accounting for the majority of U.S. capacity to estimate greenhouse gas (GHG) emissions and energy efficiencies on the basis of updated values for crop management and yields.
Abstract: Summary Corn-ethanol production is expanding rapidly with the adoption of improved technologies to increase energy efficiency and profitability in crop production, ethanol conversion, and coproduct use. Life cycle assessment can evaluate the impact of these changes on environmental performance metrics. To this end, we analyzed the life cycles of corn-ethanol systems accounting for the majority of U.S. capacity to estimate greenhouse gas (GHG) emissions and energy efficiencies on the basis of updated values for crop management and yields, biorefinery operation, and coproduct utilization. Direct-effect GHG emissions were estimated to be equivalent to a 48% to 59% reduction compared to gasoline, a twofold to threefold greater reduction than reported in previous studies. Ethanol-to-petroleum output/input ratios ranged from 10:1 to 13:1 but could be increased to 19:1 if farmers adopted high-yield progressive crop and soil management practices. An advanced closed-loop biorefinery with anaerobic digestion reduced GHG emissions by 67% and increased the net energy ratio to 2.2, from 1.5 to 1.8 for the most common systems. Such improved technologies have the potential to move corn-ethanol closer to the hypothetical performance of cellulosic biofuels. Likewise, the larger GHG reductions estimated in this study allow a greater buffer for inclusion of indirect-effect land-use change emissions while still meeting regulatory GHG reduction targets. These results suggest that corn-ethanol systems have substantially greater potential to mitigate GHG emissions and reduce dependence on imported petroleum for transportation fuels than reported previously.