scispace - formally typeset
Search or ask a question

Showing papers on "Graph (abstract data type) published in 2019"


Journal ArticleDOI
TL;DR: This work presents a method named HISAT2 (hierarchical indexing for spliced alignment of transcripts 2) that can align both DNA and RNA sequences using a graph Ferragina Manzini index, and uses it to represent and search an expanded model of the human reference genome.
Abstract: The human reference genome represents only a small number of individuals, which limits its usefulness for genotyping. We present a method named HISAT2 (hierarchical indexing for spliced alignment of transcripts 2) that can align both DNA and RNA sequences using a graph Ferragina Manzini index. We use HISAT2 to represent and search an expanded model of the human reference genome in which over 14.5 million genomic variants in combination with haplotypes are incorporated into the data structure used for searching and alignment. We benchmark HISAT2 using simulated and real datasets to demonstrate that our strategy of representing a population of genomes, together with a fast, memory-efficient search algorithm, provides more detailed and accurate variant analyses than other methods. We apply HISAT2 for HLA typing and DNA fingerprinting; both applications form part of the HISAT-genotype software that enables analysis of haplotype-resolved genes or genomic regions. HISAT-genotype outperforms other computational methods and matches or exceeds the performance of laboratory-based assays. A graph-based genome indexing scheme enables variant-aware alignment of sequences with very low memory requirements.

4,855 citations


Posted Content
TL;DR: PyTorch Geometric is introduced, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch, and a comprehensive comparative study of the implemented methods in homogeneous evaluation scenarios is performed.
Abstract: We introduce PyTorch Geometric, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch. In addition to general graph data structures and processing methods, it contains a variety of recently published methods from the domains of relational learning and 3D data processing. PyTorch Geometric achieves high data throughput by leveraging sparse GPU acceleration, by providing dedicated CUDA kernels and by introducing efficient mini-batch handling for input examples of different size. In this work, we present the library in detail and perform a comprehensive comparative study of the implemented methods in homogeneous evaluation scenarios.

2,308 citations


Book ChapterDOI
04 Oct 2019
TL;DR: Permission to copy without fee all or part of this material is granted provided that the copies arc not made or distributed for direct commercial advantage.
Abstract: Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it; however, this seems to contain more knowledge than the single bit Hamiltonian/non-Hamiltonian.In this paper a computational complexity theory of the “knowledge” contained in a proof is developed. Zero-knowledge proofs are defined as those proofs that convey no additional knowledge other than the correctness of the proposition in question. Examples of zero-knowledge proof systems are given for the languages of quadratic residuosity and 'quadratic nonresiduosity. These are the first examples of zero-knowledge proofs for languages not known to be efficiently recognizable.

1,962 citations


Proceedings ArticleDOI
13 May 2019
TL;DR: Wang et al. as discussed by the authors proposed a heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions, which can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner.
Abstract: Graph neural network, as a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. However, it has not been fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links. The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph. Recently, one of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we first propose a novel heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions. Specifically, the node-level attention aims to learn the importance between a node and its meta-path based neighbors, while the semantic-level attention is able to learn the importance of different meta-paths. With the learned importance from both node-level and semantic-level attention, the importance of node and meta-path can be fully considered. Then the proposed model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner. Extensive experimental results on three real-world heterogeneous graphs not only show the superior performance of our proposed model over the state-of-the-arts, but also demonstrate its potentially good interpretability for graph analysis.

1,467 citations


Proceedings Article
19 Feb 2019
TL;DR: This paper successively removes nonlinearities and collapsing weight matrices between consecutive layers, and theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier.
Abstract: Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

1,338 citations


Proceedings ArticleDOI
18 Jul 2019
TL;DR: Wang et al. as discussed by the authors proposed Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it, effectively injecting the collaborative signal into the embedding process in an explicit manner.
Abstract: Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions - more specifically the bipartite graph structure - into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec [39] and Collaborative Memory Network [5]. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.

1,225 citations


Journal ArticleDOI
17 Jul 2019
TL;DR: Zhang et al. as discussed by the authors proposed a Text Graph Convolutional Network (Text GCN) for text classification, which jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents.
Abstract: Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

1,215 citations


Journal ArticleDOI
Shengnan Guo1, Youfang Lin1, Ning Feng1, Chao Song1, Huaiyu Wan1 
17 Jul 2019
TL;DR: Experiments on two real-world datasets from the Caltrans Performance Measurement System demonstrate that the proposed ASTGCN model outperforms the state-of-the-art baselines.
Abstract: Forecasting the traffic flows is a critical issue for researchers and practitioners in the field of transportation. However, it is very challenging since the traffic flows usually show high nonlinearities and complex patterns. Most existing traffic flow prediction methods, lacking abilities of modeling the dynamic spatial-temporal correlations of traffic data, thus cannot yield satisfactory prediction results. In this paper, we propose a novel attention based spatial-temporal graph convolutional network (ASTGCN) model to solve traffic flow forecasting problem. ASTGCN mainly consists of three independent components to respectively model three temporal properties of traffic flows, i.e., recent, daily-periodic and weekly-periodic dependencies. More specifically, each component contains two major parts: 1) the spatial-temporal attention mechanism to effectively capture the dynamic spatialtemporal correlations in traffic data; 2) the spatial-temporal convolution which simultaneously employs graph convolutions to capture the spatial patterns and common standard convolutions to describe the temporal features. The output of the three components are weighted fused to generate the final prediction results. Experiments on two real-world datasets from the Caltrans Performance Measurement System (PeMS) demonstrate that the proposed ASTGCN model outperforms the state-of-the-art baselines.

1,086 citations


Journal ArticleDOI
17 Jul 2019
TL;DR: Wang et al. as discussed by the authors proposed Session-based Recommendation with Graph Neural Networks (SR-GNN) to capture complex transitions of items, which are difficult to be revealed by previous conventional sequential methods.
Abstract: The problem of session-based recommendation aims to predict user actions based on anonymous sessions. Previous methods model a session as a sequence and estimate user representations besides item representations to make recommendations. Though achieved promising results, they are insufficient to obtain accurate user vectors in sessions and neglect complex transitions of items. To obtain accurate item embedding and take complex transitions of items into account, we propose a novel method, i.e. Session-based Recommendation with Graph Neural Networks, SR-GNN for brevity. In the proposed method, session sequences are modeled as graphstructured data. Based on the session graph, GNN can capture complex transitions of items, which are difficult to be revealed by previous conventional sequential methods. Each session is then represented as the composition of the global preference and the current interest of that session using an attention network. Extensive experiments conducted on two real datasets show that SR-GNN evidently outperforms the state-of-the-art session-based recommendation methods consistently.

1,011 citations


Proceedings ArticleDOI
TL;DR: This work develops a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it, effectively injecting the collaborative signal into the embedding process in an explicit manner.
Abstract: Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions -- more specifically the bipartite graph structure -- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at this https URL.

953 citations


Journal ArticleDOI
TL;DR: Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions, which preserves the global topology of data, allow analyzing data at different resolutions, and result in much higher computational efficiency of the typical exploratory data analysis workflow.
Abstract: Single-cell RNA-seq quantifies biological heterogeneity across both discrete cell types and continuous cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions ( https://github.com/theislab/paga ). PAGA maps preserve the global topology of data, allow analyzing data at different resolutions, and result in much higher computational efficiency of the typical exploratory data analysis workflow. We demonstrate the method by inferring structure-rich cell maps with consistent topology across four hematopoietic datasets, adult planaria and the zebrafish embryo and benchmark computational performance on one million neurons.

Proceedings ArticleDOI
25 Jul 2019
TL;DR: Wang et al. as mentioned in this paper proposed a knowledge graph attention network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion.
Abstract: To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism. We release the codes and datasets at https://github.com/xiangwang1223/knowledge_graph_attention_network.

Proceedings ArticleDOI
TL;DR: This work proposes a new method named Knowledge Graph Attention Network (KGAT), which explicitly models the high-order connectivities in KG in an end-to-end fashion and significantly outperforms state-of-the-art methods like Neural FM and RippleNet.
Abstract: To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

Proceedings ArticleDOI
25 Jul 2019
TL;DR: Cluster-GCN is proposed, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure and allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy.
Abstract: Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by~\citezhang2018gaan.

Posted Content
TL;DR: In this paper, the authors reduce the complexity of GCN by successively removing nonlinearities and collapsing weight matrices between consecutive layers, which corresponds to a fixed low-pass filter followed by a linear classifier.
Abstract: Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

Proceedings ArticleDOI
15 Jun 2019
TL;DR: A novel directed graph neural network is designed specially to extract the information of joints, bones and their relations and make prediction based on the extracted features and is tested on two large-scale datasets, NTU-RGBD and Skeleton-Kinetics, and exceeds state-of-the-art performance on both of them.
Abstract: The skeleton data have been widely used for the action recognition tasks since they can robustly accommodate dynamic circumstances and complex backgrounds. In existing methods, both the joint and bone information in skeleton data have been proved to be of great help for action recognition tasks. However, how to incorporate these two types of data to best take advantage of the relationship between joints and bones remains a problem to be solved. In this work, we represent the skeleton data as a directed acyclic graph based on the kinematic dependency between the joints and bones in the natural human body. A novel directed graph neural network is designed specially to extract the information of joints, bones and their relations and make prediction based on the extracted features. In addition, to better fit the action recognition task, the topological structure of the graph is made adaptive based on the training process, which brings notable improvement. Moreover, the motion information of the skeleton sequence is exploited and combined with the spatial information to further enhance the performance in a two-stream framework. Our final model is tested on two large-scale datasets, NTU-RGBD and Skeleton-Kinetics, and exceeds state-of-the-art performance on both of them.

Journal ArticleDOI
TL;DR: In this article, a graph convolutional model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary data sets is presented.
Abstract: Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 16 proprietary industrial data sets spanning a wide variety of chemical end points. In addition, we introduce a graph convolutional model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary data sets. Our empirical findings indicate that while approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant improvements over models currently used in industrial workflows.

Posted Content
TL;DR: Wang et al. as discussed by the authors proposed a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling, which can precisely capture the hidden spatial dependency in the data.
Abstract: Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system. Existing approaches mostly capture the spatial dependency on a fixed graph structure, assuming that the underlying relation between entities is pre-determined. However, the explicit graph structure (relation) does not necessarily reflect the true dependency and genuine relation may be missing due to the incomplete connections in the data. Furthermore, existing methods are ineffective to capture the temporal trends as the RNNs or CNNs employed in these methods cannot capture long-range temporal sequences. To overcome these limitations, we propose in this paper a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling. By developing a novel adaptive dependency matrix and learn it through node embedding, our model can precisely capture the hidden spatial dependency in the data. With a stacked dilated 1D convolution component whose receptive field grows exponentially as the number of layers increases, Graph WaveNet is able to handle very long sequences. These two components are integrated seamlessly in a unified framework and the whole framework is learned in an end-to-end manner. Experimental results on two public traffic network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of our algorithm.

Journal ArticleDOI
TL;DR: A comprehensive review specifically on the emerging field of graph convolutional networks, which is one of the most prominent graph deep learning models, is conducted and several open challenges are presented and potential directions for future research are discussed.
Abstract: Graphs naturally appear in numerous application domains, ranging from social analysis, bioinformatics to computer vision. The unique capability of graphs enables capturing the structural relations among data, and thus allows to harvest more insights compared to analyzing data in isolation. However, it is often very challenging to solve the learning problems on graphs, because (1) many types of data are not originally structured as graphs, such as images and text data, and (2) for graph-structured data, the underlying connectivity patterns are often complex and diverse. On the other hand, the representation learning has achieved great successes in many areas. Thereby, a potential solution is to learn the representation of graphs in a low-dimensional Euclidean space, such that the graph properties can be preserved. Although tremendous efforts have been made to address the graph representation learning problem, many of them still suffer from their shallow learning mechanisms. Deep learning models on graphs (e.g., graph neural networks) have recently emerged in machine learning and other related areas, and demonstrated the superior performance in various problems. In this survey, despite numerous types of graph neural networks, we conduct a comprehensive review specifically on the emerging field of graph convolutional networks, which is one of the most prominent graph deep learning models. First, we group the existing graph convolutional network models into two categories based on the types of convolutions and highlight some graph convolutional network models in details. Then, we categorize different graph convolutional networks according to the areas of their applications. Finally, we present several open challenges in this area and discuss potential directions for future research.

Proceedings ArticleDOI
16 Aug 2019
TL;DR: This paper proposes a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling by developing a novel adaptive dependency matrix and learn it through node embedding, which can precisely capture the hidden spatial dependency in the data.
Abstract: Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system. Existing approaches mostly capture the spatial dependency on a fixed graph structure, assuming that the underlying relation between entities is pre-determined. However, the explicit graph structure (relation) does not necessarily reflect the true dependency and genuine relation may be missing due to the incomplete connections in the data. Furthermore, existing methods are ineffective to capture the temporal trends as the RNNs or CNNs employed in these methods cannot capture long-range temporal sequences. To overcome these limitations, we propose in this paper a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling. By developing a novel adaptive dependency matrix and learn it through node embedding, our model can precisely capture the hidden spatial dependency in the data. With a stacked dilated 1D convolution component whose receptive field grows exponentially as the number of layers increases, Graph WaveNet is able to handle very long sequences. These two components are integrated seamlessly in a unified framework and the whole framework is learned in an end-to-end manner. Experimental results on two public traffic network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of our algorithm.

Proceedings ArticleDOI
Lei Wang1, Yuchun Huang1, Yaolin Hou1, Shenman Zhang1, Jie Shan2 
15 Jun 2019
TL;DR: A novel graph attention convolution, whose kernels can be dynamically carved into specific shapes to adapt to the structure of an object, which can capture the structured features of point clouds for fine-grained segmentation and avoid feature contamination between objects.
Abstract: Standard convolution is inherently limited for semantic segmentation of point cloud due to its isotropy about features. It neglects the structure of an object, results in poor object delineation and small spurious regions in the segmentation result. This paper proposes a novel graph attention convolution (GAC), whose kernels can be dynamically carved into specific shapes to adapt to the structure of an object. Specifically, by assigning proper attentional weights to different neighboring points, GAC is designed to selectively focus on the most relevant part of them according to their dynamically learned features. The shape of the convolution kernel is then determined by the learned distribution of the attentional weights. Though simple, GAC can capture the structured features of point clouds for fine-grained segmentation and avoid feature contamination between objects. Theoretically, we provided a thorough analysis on the expressive capabilities of GAC to show how it can learn about the features of point clouds. Empirically, we evaluated the proposed GAC on challenging indoor and outdoor datasets and achieved the state-of-the-art results in both scenarios.

Posted Content
TL;DR: DropEdge is a general skill that can be equipped with many other backbone models (e.g. GCN, ResGCN, GraphSAGE, and JKNet) for enhanced performance and consistently improves the performance on a variety of both shallow and deep GCNs.
Abstract: \emph{Over-fitting} and \emph{over-smoothing} are two main obstacles of developing deep Graph Convolutional Networks (GCNs) for node classification. In particular, over-fitting weakens the generalization ability on small dataset, while over-smoothing impedes model training by isolating output representations from the input features with the increase in network depth. This paper proposes DropEdge, a novel and flexible technique to alleviate both issues. At its core, DropEdge randomly removes a certain number of edges from the input graph at each training epoch, acting like a data augmenter and also a message passing reducer. Furthermore, we theoretically demonstrate that DropEdge either reduces the convergence speed of over-smoothing or relieves the information loss caused by it. More importantly, our DropEdge is a general skill that can be equipped with many other backbone models (e.g. GCN, ResGCN, GraphSAGE, and JKNet) for enhanced performance. Extensive experiments on several benchmarks verify that DropEdge consistently improves the performance on a variety of both shallow and deep GCNs. The effect of DropEdge on preventing over-smoothing is empirically visualized and validated as well. Codes are released on~\url{this https URL}.

Journal ArticleDOI
Yifan Feng1, Haoxuan You2, Zizhao Zhang2, Rongrong Ji1, Yue Gao2 
17 Jul 2019
TL;DR: A hypergraph neural networks framework for data representation learning, which can encode high-order data correlation in a hypergraph structure using a hyperedge convolution operation, which outperforms recent state-of-theart methods.
Abstract: In this paper, we present a hypergraph neural networks (HGNN) framework for data representation learning, which can encode high-order data correlation in a hypergraph structure. Confronting the challenges of learning representation for complex data in real practice, we propose to incorporate such data structure in a hypergraph, which is more flexible on data modeling, especially when dealing with complex data. In this method, a hyperedge convolution operation is designed to handle the data correlation during representation learning. In this way, traditional hypergraph learning procedure can be conducted using hyperedge convolution operations efficiently. HGNN is able to learn the hidden layer representation considering the high-order data structure, which is a general framework considering the complex data correlations. We have conducted experiments on citation network classification and visual object recognition tasks and compared HGNN with graph convolutional networks and other traditional methods. Experimental results demonstrate that the proposed HGNN method outperforms recent state-of-theart methods. We can also reveal from the results that the proposed HGNN is superior when dealing with multi-modal data compared with existing methods.

Proceedings ArticleDOI
07 Apr 2019
TL;DR: This work proposes a multi-label classification model based on Graph Convolutional Network (GCN), and proposes a novel re-weighted scheme to create an effective label correlation matrix to guide information propagation among the nodes in GCN.
Abstract: The task of multi-label image recognition is to predict a set of object labels that present in an image. As objects normally co-occur in an image, it is desirable to model the label dependencies to improve the recognition performance. To capture and explore such important dependencies, we propose a multi-label classification model based on Graph Convolutional Network (GCN). The model builds a directed graph over the object labels, where each node (label) is represented by word embeddings of a label, and GCN is learned to map this label graph into a set of inter-dependent object classifiers. These classifiers are applied to the image descriptors extracted by another sub-net, enabling the whole network to be end-to-end trainable. Furthermore, we propose a novel re-weighted scheme to create an effective label correlation matrix to guide information propagation among the nodes in GCN. Experiments on two multi-label image recognition datasets show that our approach obviously outperforms other existing state-of-the-art methods. In addition, visualization analyses reveal that the classifiers learned by our model maintain meaningful semantic topology.

Journal ArticleDOI
TL;DR: This work develops, for the first time, universal MatErials Graph Network (MEGNet) models for accurate property prediction in both molecules and crystals and demonstrates the transfer learning of elemental embeddings from a property model trained on a larger data set to accelerate the training of property models with smaller amounts of data.
Abstract: Graph networks are a new machine learning (ML) paradigm that supports both relational reasoning and combinatorial generalization. Here, we develop universal MatErials Graph Network (MEGNet) models ...

Proceedings ArticleDOI
TL;DR: Cluster-GCN as discussed by the authors is a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure, where at each step, it samples a block of nodes that associate with a dense subgraph and restricts the neighborhood search within this subgraph.
Abstract: Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at this https URL.

Proceedings Article
01 Jan 2019
TL;DR: This paper proposes Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem.
Abstract: The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.

Posted Content
TL;DR: A graph convolutional model is introduced that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary data sets.
Abstract: Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors, and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 16 proprietary industrial datasets spanning a wide variety of chemical endpoints. In addition, we introduce a graph convolutional model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary datasets. Our empirical findings indicate that while approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant improvements over models currently used in industrial workflows.

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Zhang et al. as mentioned in this paper exploit the proposal-proposal relations using GraphConvolutional Networks (GCNs) to exploit the context information for each proposal and the correlations between distinct actions.
Abstract: Most state-of-the-art action localization systems process each action proposal individually, without explicitly exploiting their relations during learning. However, the relations between proposals actually play an important role in action localization, since a meaningful action always consists of multiple proposals in a video. In this paper, we propose to exploit the proposal-proposal relations using GraphConvolutional Networks (GCNs). First, we construct an action proposal graph, where each proposal is represented as a node and their relations between two proposals as an edge. Here, we use two types of relations, one for capturing the context information for each proposal and the other one for characterizing the correlations between distinct actions. Then we apply the GCNs over the graph to model the relations among different proposals and learn powerful representations for the action classification and localization. Experimental results show that our approach significantly outperforms the state-of-the-art on THUMOS14(49.1% versus 42.8%). Moreover, augmentation experiments on ActivityNet also verify the efficacy of modeling action proposal relationships.

Proceedings ArticleDOI
Chenyang Si1, Wentao Chen, Wei Wang1, Liang Wang, Tieniu Tan 
15 Jun 2019
TL;DR: Zhang et al. as mentioned in this paper proposed an attention enhanced graph convolutional LSTM network (AGC-LSTM) for human action recognition from skeleton data, which can not only capture discriminative features in spatial configuration and temporal dynamics but also explore the co-occurrence relationship between spatial and temporal domains.
Abstract: Skeleton-based action recognition is an important task that requires the adequate understanding of movement characteristics of a human action from the given skeleton sequence. Recent studies have shown that exploring spatial and temporal features of the skeleton sequence is vital for this task. Nevertheless, how to effectively extract discriminative spatial and temporal features is still a challenging problem. In this paper, we propose a novel Attention Enhanced Graph Convolutional LSTM Network (AGC-LSTM) for human action recognition from skeleton data. The proposed AGC-LSTM can not only capture discriminative features in spatial configuration and temporal dynamics but also explore the co-occurrence relationship between spatial and temporal domains. We also present a temporal hierarchical architecture to increase temporal receptive fields of the top AGC-LSTM layer, which boosts the ability to learn the high-level semantic representation and significantly reduces the computation cost. Furthermore, to select discriminative spatial information, the attention mechanism is employed to enhance information of key joints in each AGC-LSTM layer. Experimental results on two datasets are provided: NTU RGB+D dataset and Northwestern-UCLA dataset. The comparison results demonstrate the effectiveness of our approach and show that our approach outperforms the state-of-the-art methods on both datasets.