scispace - formally typeset
Search or ask a question

Showing papers on "Haplogroup published in 2012"


Journal ArticleDOI
TL;DR: Analysis of gene flow indicates that a small number of ancestral lineages gave rise to the existing diversity through a process of limited admixture, and marked phenotypic variation characterizes isolates of Toxoplasma gondii.
Abstract: Marked phenotypic variation characterizes isolates of Toxoplasma gondii, a ubiquitous zoonotic parasite that serves as an important experimental model for studying apicomplexan parasites. Progress in identifying the heritable basis for clinically and epidemiologically significant differences requires a robust system for describing and interpreting evolutionary subdivisions in this prevalent pathogen. To develop such a system, we have examined more than 950 isolates collected from around the world and genotyped them using three independent sets of polymorphic DNA markers, sampling 30 loci distributed across all nuclear chromosomes as well as the plastid genome. Our studies reveal a biphasic pattern consisting of regions in the Northern Hemisphere where a few, highly clonal and abundant lineages predominate; elsewhere, and especially in portions of South America are characterized by a diverse assemblage of less common genotypes that show greater evidence of recombination. Clustering methods were used to organize the marked genetic diversity of 138 unique genotypes into 15 haplogroups that collectively define six major clades. Analysis of gene flow indicates that a small number of ancestral lineages gave rise to the existing diversity through a process of limited admixture. Identification of reference strains for these major groups should facilitate future studies on comparative genomics and identification of genes that control important biological phenotypes including pathogenesis and transmission.

333 citations


Journal ArticleDOI
TL;DR: The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world.
Abstract: Although fossil remains show that anatomically modern humans dispersed out of Africa into the Near East ∼100 to 130 ka, genetic evidence from extant populations has suggested that non-Africans descend primarily from a single successful later migration. Within the human mitochondrial DNA (mtDNA) tree, haplogroup L3 encompasses not only many sub-Saharan Africans but also all ancient non-African lineages, and its age therefore provides an upper bound for the dispersal out of Africa. An analysis of 369 complete African L3 sequences places this maximum at ∼70 ka, virtually ruling out a successful exit before 74 ka, the date of the Toba volcanic supereruption in Sumatra. The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world. The timing of the expansion of L3 suggests a link to improved climatic conditions after ∼70 ka in Eastern and Central Africa rather than to symbolically mediated behavior, which evidently arose considerably earlier. The L3 mtDNA pool within Africa suggests a migration from Eastern Africa to Central Africa ∼60 to 35 ka and major migrations in the immediate postglacial again linked to climate. The largest population size increase seen in the L3 data is 3-4 ka in Central Africa, corresponding to Bantu expansions, leading diverse L3 lineages to spread into Eastern and Southern Africa in the last 3-2 ka.

231 citations


Journal ArticleDOI
TL;DR: Now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to classify well-preserved ancient remains, assess the haplogroup variation of modern breeds, and evaluate the possible role of mtDNA backgrounds in racehorse performance.
Abstract: Archaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas. Our data reveal 18 major haplogroups (A–R) with radiation times that are mostly confined to the Neolithic and later periods and place the root of the phylogeny corresponding to the Ancestral Mare Mitogenome at ∼130–160 thousand years ago. All haplogroups were detected in modern horses from Asia, but F was only found in E. przewalskii—the only remaining wild horse. Therefore, a wide range of matrilineal lineages from the extinct E. ferus underwent domestication in the Eurasian steppes during the Eneolithic period and were transmitted to modern E. caballus breeds. Importantly, now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to (i) classify well-preserved ancient remains, (ii) (re)assess the haplogroup variation of modern breeds, including Thoroughbreds, and (iii) evaluate the possible role of mtDNA backgrounds in racehorse performance.

203 citations


Journal ArticleDOI
TL;DR: Analysis of macrophage transcriptome in the Cardiogenics Study revealed that 19 molecular pathways showing strong differential expression between men with haplogroup I and other lineages of the Y chromosome were interconnected by common genes related to inflammation and immunity, and that some of them have a strong relevance to atherosclerosis.

192 citations


Journal ArticleDOI
TL;DR: This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.
Abstract: It is now widely agreed that the Native American founders originated from a Beringian source population ∼15-18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America. © 2012, Published by Cold Spring Harbor Laboratory Press.

166 citations


Journal ArticleDOI
TL;DR: Differences in the origin and population history of Altaian ethnic groups are noted, with northern Altaians appearing more like Yeniseian, Ugric, and Samoyedic speakers to the north, and southern AlTAians having greater affinities to other Turkic speaking populations of southern Siberia and Central Asia.
Abstract: The Altai region of southern Siberia has played a critical role in the peopling of northern Asia as an entry point into Siberia and a possible homeland for ancestral Native Americans. It has an old and rich history because humans have inhabited this area since the Paleolithic. Today, the Altai region is home to numerous Turkic-speaking ethnic groups, which have been divided into northern and southern clusters based on linguistic, cultural, and anthropological traits. To untangle Altaian genetic histories, we analyzed mtDNA and Y chromosome variation in northern and southern Altaian populations. All mtDNAs were assayed by PCR-RFLP analysis and control region sequencing, and the nonrecombining portion of the Y chromosome was scored for more than 100 biallelic markers and 17 Y-STRs. Based on these data, we noted differences in the origin and population history of Altaian ethnic groups, with northern Altaians appearing more like Yeniseian, Ugric, and Samoyedic speakers to the north, and southern Altaians having greater affinities to other Turkic speaking populations of southern Siberia and Central Asia. Moreover, high-resolution analysis of Y chromosome haplogroup Q has allowed us to reshape the phylogeny of this branch, making connections between populations of the New World and Old World more apparent and demonstrating that southern Altaians and Native Americans share a recent common ancestor. These results greatly enhance our understanding of the peopling of Siberia and the Americas.

143 citations


Journal ArticleDOI
TL;DR: Analysis of three minor west-Eurasian haplogroups shows that they have a relict distribution that suggests an ancient ancestry within the Arabian Peninsula, and they most likely spread from the Gulf Oasis region toward the Near East and Europe during the pluvial period 55-24 ka ago.
Abstract: A major unanswered question regarding the dispersal of modern humans around the world concerns the geographical site of the first human steps outside of Africa. The “southern coastal route” model predicts that the early stages of the dispersal took place when people crossed the Red Sea to southern Arabia, but genetic evidence has hitherto been tenuous. We have addressed this question by analyzing the three minor west-Eurasian haplogroups, N1, N2, and X. These lineages branch directly from the first non-African founder node, the root of haplogroup N, and coalesce to the time of the first successful movement of modern humans out of Africa, ∼60 thousand years (ka) ago. We sequenced complete mtDNA genomes from 85 Southwest Asian samples carrying these haplogroups and compared them with a database of 300 European examples. The results show that these minor haplogroups have a relict distribution that suggests an ancient ancestry within the Arabian Peninsula, and they most likely spread from the Gulf Oasis region toward the Near East and Europe during the pluvial period 55–24 ka ago. This pattern suggests that Arabia was indeed the first staging post in the spread of modern humans around the world.

121 citations


Journal ArticleDOI
TL;DR: This mtDNA variant fulfills the criteria for a common variant that predisposes to a “complex” disease and can either be deleterious or beneficial depending on its haplogroup and environmental context.
Abstract: The distinction between mild pathogenic mtDNA mutations and population polymorphisms can be ambiguous because both are homoplasmic, alter conserved functions, and correlate with disease. One possible explanation for this ambiguity is that the same variant may have different consequences in different contexts. The NADH dehydrogenase subunit 1 (ND1) nucleotide 3394 T > C (Y30H) variant is such a case. This variant has been associated with Leber hereditary optic neuropathy and it reduces complex I activity and cellular respiration between 7% and 28% on the Asian B4c and F1 haplogroup backgrounds. However, complex I activity between B4c and F1 mtDNAs, which harbor the common 3394T allele, can also differ by 30%. In Asia, the 3394C variant is most commonly associated with the M9 haplogroup, which is rare at low elevations but increases in frequency with elevation to an average of 25% of the Tibetan mtDNAs (odds ratio = 23.7). In high-altitude Tibetan and Indian populations, the 3394C variant occurs on five different macrohaplogroup M haplogroup backgrounds and is enriched on the M9 background in Tibet and the C4a4 background on the Indian Deccan Plateau (odds ratio = 21.9). When present on the M9 background, the 3394C variant is associated with a complex I activity that is equal to or higher than that of the 3394T variant on the B4c and F1 backgrounds. Hence, the 3394C variant can either be deleterious or beneficial depending on its haplogroup and environmental context. Thus, this mtDNA variant fulfills the criteria for a common variant that predisposes to a “complex” disease.

121 citations


Journal ArticleDOI
01 May 2012-Heredity
TL;DR: Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pool in all other regions may derive from ASY.
Abstract: Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog–wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14 437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13–24 wolf founders, but there was no indication of post-domestication dog–wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog–wolf hybridisation contributed modestly to the dog gene pool.

120 citations


Journal ArticleDOI
TL;DR: The findings indicate that mtDNA-specific interactions between mitochondria and the nucleus regulate epigenetic changes, possibly by affecting oxidative phosphorylation efficiency.
Abstract: Aim: In the present study, we investigated whether global DNA methylation levels are affected by mitochondrial DNA (mtDNA) variants, which are known to modulate mitochondrial functions. Materials & methods: Global DNA methylation levels were evaluated in peripheral blood DNA collected from adult subjects and in vitro using the DNA of cybrid cells harboring mtDNAs of different haplogroups. In these cells, mRNA expression of genes involved in DNA methylation processes, and ATP and reactive oxygen species levels were also analyzed. Results: The analysis revealed that methylation levels were higher in the subjects carrying the J haplogroup than in non-J carriers. Consistently, cybrids with J haplogroup mtDNA showed higher methylation levels than other cybrids. Interestingly, we observed overexpression of the MAT1A gene and low ATP and ROS levels in J cybrids. Conclusion: Our findings indicate that mtDNA-specific interactions between mitochondria and the nucleus regulate epigenetic changes, possibly by affecti...

114 citations


Journal ArticleDOI
18 Jul 2012-PLOS ONE
TL;DR: AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes.
Abstract: Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct populations.

Journal ArticleDOI
TL;DR: Analysis of frequency patterns and diversity in the largest collection of R-M269-related chromosomes yet assembled reveals no geographical trends in diversity, in contradiction to expectation under the Neolithic hypothesis, and suggests an alternative explanation for the apparent cline in diversity recently described.
Abstract: Recently, the debate on the origins of the major European Y chromosome haplogroup R1b1b2-M269 has reignited, and opinion has moved away from Palaeolithic origins to the notion of a younger Neolithic spread of these chromosomes from the Near East. Here, we address this debate by investigating frequency patterns and diversity in the largest collection of R1b1b2-M269 chromosomes yet assembled. Our analysis reveals no geographical trends in diversity, in contradiction to expectation under the Neolithic hypothesis, and suggests an alternative explanation for the apparent cline in diversity recently described. We further investigate the young, STR-based time to the most recent common ancestor estimates proposed so far for R-M269-related lineages and find evidence for an appreciable effect of microsatellite choice on age estimates. As a consequence, the existing data and tools are insufficient to make credible estimates for the age of this haplogroup, and conclusions about the timing of its origin and dispersal should be viewed with a large degree of caution.

Journal ArticleDOI
10 Sep 2012-PLOS ONE
TL;DR: The results indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin, and suggest a population break between the extreme south of South America and the more northern part of the continent.
Abstract: After several years of research, there is now a consensus that America was populated from Asia through Beringia, probably at the end of the Pleistocene. But many details such as the timing, route(s), and origin of the first settlers remain uncertain. In the last decade genetic evidence has taken on a major role in elucidating the peopling of the Americas. To study the early peopling of South America, we sequenced the control region of mitochondrial DNA from 300 individuals belonging to indigenous populations of Chile and Argentina, and also obtained seven complete mitochondrial DNA sequences. We identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently described D1g sub-haplogroup have locally high frequencies and are basically restricted to populations from the extreme south of South America. The estimated ages of D1g and B2l, about ∼15,000 years BP, together with their similar population dynamics and the high haplotype diversity shown by the networks, suggests that they probably appeared soon after the arrival of the first settlers and agrees with the dating of the earliest archaeological sites in South America (Monte Verde, Chile, 14,500 BP). One further sub-haplogroup, D4h3a5, appears to be restricted to Fuegian-Patagonian populations and reinforces our hypothesis of the continuity of the current Patagonian populations with the initial founders. Our results indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin, and suggest a population break between the extreme south of South America and the more northern part of the continent. Thus the early colonization process was not just an expansion from north to south, but also included movements across the Andes.

Journal ArticleDOI
TL;DR: Results suggest that the mitochondrial DNA amount determines oxidative phosphorylation capacity and support the possibility that mitochondrial DNA levels may be responsible for the bias of the disorder toward males, for the incomplete penetrance of mutations causing Leber's hereditary optic neuropathy and for the association of the disease with particular mitochondrial DNA haplogroups.

Journal ArticleDOI
TL;DR: This study determined the differences in catalytic properties of mitochondria dictated by divergences in the siII and siIII haplogroups of Drosophila simulans using introgressions of siII mtDNA type into the siIII nuclear background, demonstrating a naturally occurring haplogroup can confer specific functional differences in aspects of mitochondrial metabolism.
Abstract: Linking the mitochondrial genotype and the organismal phenotype is of paramount importance in evolution of mitochondria. In this study, we determined the differences in catalytic properties of mitochondria dictated by divergences in the siII and siIII haplogroups of Drosophila simulans using introgressions of siII mtDNA type into the siIII nuclear background. We used a novel in situ method (permeabilized fibers) that allowed us to accurately measure the consumption of oxygen by mitochondria in constructed siII-introgressed flies and in siIII-control flies. Our results showed that the catalytic capacity of the electron transport system is not impaired by introgressions, suggesting that the functional properties of mitochondria are tightly related to the mtDNA haplogroup and not to the nuclear DNA or to the mito-nuclear interactions. This is the first study, to our knowledge, that demonstrates a naturally occurring haplogroup can confer specific functional differences in aspects of mitochondrial metabolism. This study illustrates the importance of mtDNA changes on organelle evolution and highlights the potential bioenergetic and metabolic impacts that divergent mitochondrial haplogroups may have upon a wide variety of species including humans.

Journal ArticleDOI
TL;DR: End-users accessing HmtDB are allowed to browse the database through the use of a multi-criterion ‘query’ system and analyze their own human mitochondrial sequences via the ‘classify’ tool or by downloading the “fragment-classifier” tool (for partial sequences).
Abstract: HmtDB (http://www.hmtdb.uniba.it:8080/hmdb) is a open resource created to support population genetics and mitochondrial disease studies. The database hosts human mitochondrial genome sequences annotated with population and variability data, the latter being estimated through the application of the SiteVar software based on site-specific nucleotide and amino acid variability calculations. The annotations are manually curated thus adding value to the quality of the information provided to the end-user. Classifier tools implemented in HmtDB allow the prediction of the haplogroup for any human mitochondrial genome currently stored in HmtDB or externally submitted de novo by an end-user. Haplogroup definition is based on the Phylotree system. End-users accessing HmtDB are hence allowed to (i) browse the database through the use of a multi-criterion ‘query’ system; (ii) analyze their own human mitochondrial sequences via the ‘classify’ tool (for complete genomes) or by downloading the ‘fragment-classifier’ tool (for partial sequences); (iii) download multi-alignments with reference genomes as well as variability data.

Journal ArticleDOI
TL;DR: No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities, and the P303 SNP defines the most frequent and widespread G sub-haplogroup.
Abstract: Haplogroup G, together with J2 clades, has been associated with the spread of agriculture, especially in the European context. However, interpretations based on simple haplogroup frequency clines do not recognize underlying patterns of genetic diversification. Although progress has been recently made in resolving the haplogroup G phylogeny, a comprehensive survey of the geographic distribution patterns of the significant sub-clades of this haplogroup has not been conducted yet. Here we present the haplogroup frequency distribution and STR variation of 16 informative G sub-clades by evaluating 1472 haplogroup G chromosomes belonging to 98 populations ranging from Europe to Pakistan. Although no basal G-M201* chromosomes were detected in our data set, the homeland of this haplogroup has been estimated to be somewhere nearby eastern Anatolia, Armenia or western Iran, the only areas characterized by the co-presence of deep basal branches as well as the occurrence of high sub-haplogroup diversity. The P303 SNP defines the most frequent and widespread G sub-haplogroup. However, its sub-clades have more localized distribution with the U1-defined branch largely restricted to Near/Middle Eastern and the Caucasus, whereas L497 lineages essentially occur in Europe where they likely originated. In contrast, the only U1 representative in Europe is the G-M527 lineage whose distribution pattern is consistent with regions of Greek colonization. No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities.

Journal ArticleDOI
07 Jun 2012-PLOS ONE
TL;DR: The data support the overall scenario of a Near Eastern origin of the T1 sub-haplogroups from as much as eight founding T1 haplotypes, and the previously identified “African-derived American" (AA) haplotype turned out to be a sub-clade of T1c (T1c1a1).
Abstract: Background Most genetic studies on modern cattle have established a common origin for all taurine breeds in the Near East, during the Neolithic transition about 10 thousand years (ka) ago. Yet, the possibility of independent and/or secondary domestication events is still debated and is fostered by the finding of rare mitochondrial DNA (mtDNA) haplogroups like P, Q and R. Haplogroup T1, because of its geographic distribution, has been the subject of several investigations pointing to a possible independent domestication event in Africa and suggesting a genetic contribution of African cattle to the formation of Iberian and Creole cattle. Whole mitochondrial genome sequence analysis, with its proven effectiveness in improving the resolution of phylogeographic studies, is the most appropriate tool to investigate the origin and structure of haplogroup T1.

Journal ArticleDOI
01 Oct 2012-Diabetes
TL;DR: It is found that mtDNA variants in the coding and control regions can have combined effects influencing diabetes generation, and an mtDNA composite group susceptible to DM generation is identified.
Abstract: Both the coding and control regions of mitochondrial DNA (mtDNA) play roles in the generation of diabetes; however, no studies have thoroughly reported on the combined diabetogenic effects of variants in the two regions. We determined the mitochondrial haplogroup and the mtDNA sequence of the control region in 859 subjects with diabetes and 1,151 normoglycemic control subjects. Full-length mtDNA sequences were conducted in 40 subjects harboring specific diabetes-related haplogroups. Multivariate logistic regression analysis with adjustment for age, sex, and BMI revealed that subjects harboring the mitochondrial haplogroup B4 have significant association with diabetes (DM) (odds ratio [OR], 1.54 [95% CI 1.18–2.02]; P < 0.001), whereas subjects harboring D4 have borderline resistance against DM generation (0.68 [0.49–0.94]; P = 0.02). Upon further study, we identified an mtDNA composite group susceptible to DM generation consisting of a 10398A allele at the coding region and a polycytosine variant at nucleotide pair 16184–16193 of the control region, as well as a resistant group consisting of C5178A, A10398G, and T152C variants. The OR for susceptible group is 1.31 (95% CI 1.04–1.67; P = 0.024) and for the resistant group is 0.48 (0.31–0.75; P = 0.001). Our study found that mtDNA variants in the coding and control regions can have combined effects influencing diabetes generation.

Journal ArticleDOI
03 Aug 2012-PLOS ONE
TL;DR: The sequence analysis confirms the major role of haplogroups J1c and J2b (over 35% in probands versus 6% in the general population of Western Europe) and other putative synergistic mtDNA variants in LHON expression and indicates that these nine substitutions are all primary LHON mutations.
Abstract: Background Leber’s hereditary optic neuropathy (LHON) is a maternally inherited blinding disorder, which in over 90% of cases is due to one of three primary mitochondrial DNA (mtDNA) point mutations (m.11778G>A, m.3460G>A and m.14484T>C, respectively in MT-ND4, MT-ND1 and MT-ND6 genes). However, the spectrum of mtDNA mutations causing the remaining 10% of cases is only partially and often poorly defined. Methodology/Principal Findings In order to improve such a list of pathological variants, we completely sequenced the mitochondrial genomes of suspected LHON patients from Italy, France and Germany, lacking the three primary common mutations. Phylogenetic and conservation analyses were performed. Sixteen mitochondrial genomes were found to harbor at least one of the following nine rare LHON pathogenic mutations in genes MT-ND1 (m.3700G>A/p.A132T, m.3733G>A-C/p.E143K-Q, m.4171C>A/p.L289M), MT-ND4L (m.10663T>C/p.V65A) and MT-ND6 (m.14459G>A/p.A72V, m.14495A>G/p.M64I, m.14482C>A/p.L60S, and m.14568C>T/p.G36S). Phylogenetic analyses revealed that these substitutions were due to independent events on different haplogroups, whereas interspecies comparisons showed that they affected conserved amino acid residues or domains in the ND subunit genes of complex I. Conclusions/Significance Our findings indicate that these nine substitutions are all primary LHON mutations. Therefore, despite their relative low frequency, they should be routinely tested for in all LHON patients lacking the three common mutations. Moreover, our sequence analysis confirms the major role of haplogroups J1c and J2b (over 35% in our probands versus 6% in the general population of Western Europe) and other putative synergistic mtDNA variants in LHON expression.

Journal ArticleDOI
TL;DR: The results confirm that deeply divergent mitochondrial lineages can coexist in biological species and argue against the use of threshold mtDNA divergences in species delineation.
Abstract: Mitochondrial DNA usually shows low sequence variation within and high sequence divergence among species, which makes it a useful marker for phylogenetic inference and DNA barcoding. A previous study on the common redstart (Phoenicurus phoenicurus) revealed two very different mtDNA haplogroups (5% K2P distance). This divergence is comparable to that among many sister species; however, both haplogroups coexist and interbreed in Europe today. Herein, we describe the phylogeographic pattern of these lineages and test hypotheses for how such high diversity in mtDNA has evolved. We found no evidence for mitochondrial pseudogenes confirming that both haplotypes are of mitochondrial origin. When testing for possible reproductive barriers, we found no evidence for lineage-specific assortative mating and no difference in sperm morphology, indicating that they are not examples of cryptic species, nor likely to reflect the early stages of speciation. A gene tree based on a short fragment of cytochrome c oxidase subunit 1 from the common redstart and 10 other Phoenicurus species, showed no introgression from any of the extant congenerics. However, introgression from an extinct congeneric cannot be excluded. Sequences from two nuclear introns did not show a similar differentiation into two distinct groups. Mismatch distributions indicated that the lineages have undergone similar demographic changes. Taken together, these results confirm that deeply divergent mitochondrial lineages can coexist in biological species. Sympatric mtDNA divergences are relatively rare in birds, but the fact that they occur argues against the use of threshold mtDNA divergences in species delineation.

Journal ArticleDOI
21 Feb 2012-PLOS ONE
TL;DR: The findings confirm the previous conclusion that northern Asian maternal gene pool consists of predominantly post- LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin.
Abstract: With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin.

Journal ArticleDOI
TL;DR: In this paper, the authors describe patterns of mtDNA and nonrecombining Y chromosome variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking and Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia).
Abstract: Although genetic studies have contributed greatly to our understanding of the colonization of Near and Remote Oceania, important gaps still exist. One such gap is the Solomon Islands, which extend between Bougainville and Vanuatu, thereby bridging Near and Remote Oceania, and include both Austronesian-speaking and Papuan-speaking groups. Here, we describe patterns of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking groups, 3 Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia). We find evidence for ancient (pre-Lapita) colonization of the Solomons in old NRY paragroups as well as from M2-M353, which probably arose in the Solomons ∼9,200 years ago and is the most frequent NRY haplogroup there. There are no consistent genetic differences between Austronesian-speaking and Papuan-speaking groups, suggesting extensive genetic contact between them. Santa Cruz, which is located in Remote Oceania, shows unusually low frequencies of mtDNA and NRY haplogroups of recent Asian ancestry. This is in apparent contradiction with expectations based on archaeological and linguistic evidence for an early (∼3,200 years ago), direct colonization of Santa Cruz by Lapita people from the Bismarck Archipelago, via a migration that "leapfrogged" over the rest of the Solomons. Polynesian Outliers show dramatic island-specific founder events involving various NRY haplogroups. We also find that NRY, but not mtDNA, genetic distance is correlated with the geographic distance between Solomons groups and that historically attested spheres of cultural interaction are associated with the recent genetic structure of Solomons groups, as revealed by mtDNA HV1 sequence and Y-STR haplotype diversity. Our results fill an important lacuna in human genetic studies of Oceania and aid in understanding the colonization and genetic history of this region.

Journal ArticleDOI
TL;DR: The results clearly support the hypothesis of a partial genetic continuity of contemporary Basques with the preceding Paleolithic/Mesolithic settlers of their homeland and increase knowledge of the origins of the Basque people.
Abstract: Different lines of evidence point to the resettlement of much of western and central Europe by populations from the Franco-Cantabrian region during the Late Glacial and Postglacial periods. In this context, the study of the genetic diversity of contemporary Basques, a population located at the epicenter of the Franco-Cantabrian region, is particularly useful because they speak a non-Indo-European language that is considered to be a linguistic isolate. In contrast with genome-wide analysis and Y chromosome data, where the problem of poor time estimates remains, a new timescale has been established for the human mtDNA and makes this genome the most informative marker for studying European prehistory. Here, we aim to increase knowledge of the origins of the Basque people and, more generally, of the role of the Franco-Cantabrian refuge in the postglacial repopulation of Europe. We thus characterize the maternal ancestry of 908 Basque and non-Basque individuals from the Basque Country and immediate adjacent regions and, by sequencing 420 complete mtDNA genomes, we focused on haplogroup H. We identified six mtDNA haplogroups, H1j1, H1t1, H2a5a1, H1av1, H3c2a, and H1e1a1, which are autochthonous to the Franco-Cantabrian region and, more specifically, to Basque-speaking populations. We detected signals of the expansion of these haplogroups at ∼4,000 years before present (YBP) and estimated their separation from the pan-European gene pool at ∼8,000 YBP, antedating the Indo-European arrival to the region. Our results clearly support the hypothesis of a partial genetic continuity of contemporary Basques with the preceding Paleolithic/Mesolithic settlers of their homeland.

Journal ArticleDOI
TL;DR: None of the automated haplogroupsing tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets.
Abstract: Haplogrouping refers to the classification of (partial) mitochondrial DNA (mtDNA) sequences into haplogroups using the current knowledge of the worldwide mtDNA phylogeny. Haplogroup assignment of mtDNA control-region sequences assists in the focused comparison with closely related complete mtDNA sequences and thus serves two main goals in forensic genetics: first is the a posteriori quality analysis of sequencing results and second is the prediction of relevant coding-region sites for confirmation or further refinement of haplogroup status. The latter may be important in forensic casework where discrimination power needs to be as high as possible. However, most articles published in forensic genetics perform haplogrouping only in a rudimentary or incorrect way. The present study features PhyloTree as the key tool for assigning control-region sequences to haplogroups and elaborates on additional Web-based searches for finding near-matches with complete mtDNA genomes in the databases. In contrast, none of the automated haplogrouping tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets. We review and classify the various attempts at haplogrouping by using a multiplex approach or relying on automated haplogrouping. Furthermore, we re-examine a few articles in forensic journals providing mtDNA population data where appropriate haplogrouping following PhyloTree immediately highlights several kinds of sequence errors.

Journal ArticleDOI
26 Dec 2012-PLOS ONE
TL;DR: Functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background, and it is observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress.
Abstract: Background: Epidemiological case-control studies have revealed associations between mitochondrial haplogroups and the onset and/or progression of various multifactorial diseases. For instance, mitochondrial haplogroup T was previously shown to be associated with vascular diseases, including coronary artery disease and diabetic retinopathy. In contrast, haplogroup H, the most frequent haplogroup in Europe, is often found to be more prevalent in healthy control subjects than in patient study groups. However, justifications for the assumption that haplogroups are functionally distinct are rare. Therefore, we attempted to compare differences in mitochondrial function between haplogroup H and T cybrids. Methodology/Principal Findings: Mitochondrial haplogroup H and T cybrids were generated by fusion of HEK293 cells devoid of mitochondrial DNA with isolated thrombocytes of individuals with the respective haplogroups. These cybrid cells were analyzed for oxidative phosphorylation (OXPHOS) enzyme activities, mitochondrial DNA (mtDNA) copy number, growth rate and susceptibility to reactive oxygen species (ROS). We observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress. Conclusions/Significance: The results of this study show that functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background.

Journal ArticleDOI
TL;DR: Evidence is provided that aggregated common and rare variants and the accumulation of singleton variants are important contributors to pancreatic cancer risk.
Abstract: Although the mitochondrial genome exhibits high mutation rates, common mitochondrial DNA (mtDNA) variation has not been consistently associated with pancreatic cancer. Here, we comprehensively examined mitochondrial genomic variation by sequencing the mtDNA of participants (cases = 286, controls = 283) in a San Francisco Bay Area pancreatic cancer case-control study. Five common variants were associated with pancreatic cancer at nominal statistical significance (P < 0.05) with the strongest finding for mt5460g in the ND2 gene [OR = 3.9; 95% confidence interval (CI), 1.5-10; P = 0.004] which encodes an A331T substitution. Haplogroup K was nominally associated with reduced pancreatic cancer risk (OR = 0.32; 95% CI, 0.13-0.76; P = 0.01) when compared with the most common haplogroup, H. A total of 19 haplogroup-specific rare variants yielded nominal statistically significant associations (P < 0.05) with pancreatic cancer risk, with the majority observed in genes involved in oxidative phosphorylation. Weighted-sum statistics were used to identify an aggregate effect of variants in the 22 mitochondrial tRNAs on pancreatic cancer risk (P = 0.02). While the burden of singleton variants in the HV2 and 12S RNA regions was three times higher among European haplogroup N cases than controls, the prevalence of singleton variants in ND4 and ND5 was two to three times higher among African haplogroup L cases than in controls. Together, the results of this study provide evidence that aggregated common and rare variants and the accumulation of singleton variants are important contributors to pancreatic cancer risk.

Journal ArticleDOI
TL;DR: High-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both Haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry.
Abstract: A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa.

Journal ArticleDOI
TL;DR: The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas.
Abstract: For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich’in, and Tlįchǫ populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tlįchǫ being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized.

Journal ArticleDOI
TL;DR: The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data.
Abstract: A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data.