scispace - formally typeset
Search or ask a question

Showing papers on "Klebsiella pneumoniae published in 2019"


Journal ArticleDOI
TL;DR: Combined analysis of the genetic and geographic distances between isolates with different β-lactam resistance determinants suggests that the propensity of K. pneumoniae to spread in hospital environments correlates with the degree of resistance and that carbapenemase-positive isolates have the highest transmissibility.
Abstract: Public health interventions to control the current epidemic of carbapenem-resistant Klebsiella pneumoniae rely on a comprehensive understanding of its emergence and spread over a wide range of geographical scales. We analysed the genome sequences and epidemiological data of >1,700 K. pneumoniae samples isolated from patients in 244 hospitals in 32 countries during the European Survey of Carbapenemase-Producing Enterobacteriaceae. We demonstrate that carbapenemase acquisition is the main cause of carbapenem resistance and that it occurred across diverse phylogenetic backgrounds. However, 477 of 682 (69.9%) carbapenemase-positive isolates are concentrated in four clonal lineages, sequence types 11, 15, 101, 258/512 and their derivatives. Combined analysis of the genetic and geographic distances between isolates with different β-lactam resistance determinants suggests that the propensity of K. pneumoniae to spread in hospital environments correlates with the degree of resistance and that carbapenemase-positive isolates have the highest transmissibility. Indeed, we found that over half of the hospitals that contributed carbapenemase-positive isolates probably experienced within-hospital transmission, and interhospital spread is far more frequent within, rather than between, countries. Finally, we propose a value of 21 for the number of single nucleotide polymorphisms that optimizes the discrimination of hospital clusters and detail the international spread of the successful epidemic lineage, ST258/512.

409 citations


Journal ArticleDOI
TL;DR: A better understanding of Klebsiella immune evasion strategies in the context of the host–pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Abstract: Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.

273 citations


Journal ArticleDOI
TL;DR: CAZ-AVI appears to be a promising drug for treatment of severe KPC-Kp infections, especially those involving bacteremia, as well as hospital-acquired pneumonia, and for gram-negative infections with limited treatment options.
Abstract: Background Ceftazidime-avibactam (CAZ-AVI) has been approved in Europe for the treatment of complicated intra-abdominal and urinary tract infections, as well as hospital-acquired pneumonia, and for gram-negative infections with limited treatment options. CAZ-AVI displays in vitro activity against Klebsiella pneumoniae carbapenemase (KPC) enzyme producers, but clinical trial data on its efficacy in this setting are lacking. Methods We retrospectively reviewed 138 cases of infections caused by KPC-producing K. pneumoniae (KPC-Kp) in adults who received CAZ-AVI in compassionate-use programs in Italy. Case features and outcomes were analyzed, and survival was then specifically explored in the large subcohort whose infections were bacteremic. Results The 138 patients started CAZ-AVI salvage therapy after a first-line treatment (median, 7 days) with other antimicrobials. CAZ-AVI was administered with at least 1 other active antibiotic in 109 (78.9%) cases. Thirty days after infection onset, 47 (34.1%) of the 138 patients had died. Thirty-day mortality among the 104 patients with bacteremic KPC-Kp infections was significantly lower than that of a matched cohort whose KPC-Kp bacteremia had been treated with drugs other than CAZ-AVI (36.5% vs 55.8%, P = .005). Multivariate analysis of the 208 cases of KPC-Kp bacteremia identified septic shock, neutropenia, Charlson comorbidity index ≥3, and recent mechanical ventilation as independent predictors of mortality, whereas receipt of CAZ-AVI was the sole independent predictor of survival. Conclusions CAZ-AVI appears to be a promising drug for treatment of severe KPC-Kp infections, especially those involving bacteremia.

249 citations


Journal ArticleDOI
Fupin Hu1, Yan Guo1, Yang Yang1, Yonggui Zheng1, Shi Wu1, Xiaofei Jiang1, Demei Zhu1, Fu Wang1 
TL;DR: The aim of this study is to investigate the antimicrobial susceptibility of strains isolated from the major hospitals in China, and it is worth to emphasize the importance of serious control of hospital infection and better management of clinical use of antimicrobial agents.
Abstract: The aim of this study is to investigate the antimicrobial susceptibility of strains isolated from the major hospitals in China. A total of 44 teaching hospitals were involved. Antimicrobial susceptibility testing was conducted by Kirby-Bauer automated systems, and results were interpreted using CLSI criteria. Totally 244,843 strains were isolated in 2018, of which gram-negative bacilli and gram-positive cocci were accounting for 71.8% and 28.2%, respectively. 39.7% of isolates were cultured from lower respiratory tract, 18.8% from urine, 14.8% from blood, 1.3% from cerebrospinal fluid, respectively. Of those, the five major species were most often isolated (65.5%, 63%, 52.3%, and 30.3%). The resistance rate of MRSA to most antimicrobial agents was significantly higher than that of MSSA strains, except for to trimethoprim-sulfamethoxazole in urine specimen. E.coli was still highly susceptible to carbapenem antibiotics, and the resistance rate was less than 5%. Carbapenem resistance among Klebsiella pneumoniae, especially cultured from cerebrospinal fluid, increased significance from 18.6 to 64.1%. The resistance rates of Pseudomonas aeruginosa to carbapenems were nearly 30% in the blood, in urine, and in the lower respiratory tract, but about 60% of that in cerebrospinal fluid. About 80% of Acinetobacter baumannii strains was resistant to imipenem and meropenem, respectively. Bacterial resistance of five major clinical isolates from cerebrospinal fluid to common antibiotics (in particular Carbapenem-resistant Klebsiella pneumoniae) currently shows an increasing trend. It is worth to emphasize the importance of serious control of hospital infection and better management of clinical use of antimicrobial agents.

174 citations


Journal ArticleDOI
TL;DR: The wide variety of MDR K. pneumoniae harboring β-lactams and virulence genes strongly suggest a necessity for the implementation of effective strategies to prevent and control the spread of antibiotic resistant infections.
Abstract: Klebsiella pneumoniae is an important opportunistic pathogen that commonly causes nosocomial infections and contributes to substantial morbidity and mortality. We sought to investigate the antibiotic resistance profile, pathogenic potential and the clonal relationships between K. pneumoniae (n = 25) isolated from patients and sources at a tertiary care hospital's intensive care units (ICUs) in the northern region of Brazil. Most of K. pneumoniae isolates (n = 21, 84%) were classified as multidrug resistant (MDR) with high-level resistance to β-lactams, aminoglycosides, quinolones, tigecycline, and colistin. All the 25 isolates presented extended-spectrum beta-lactamase-producing (ESBL), including carbapenemase producers, and carried the bla KPC (100%), bla TEM (100%), bla SHV variants (n = 24, 96%), bla OXA-1 group (n = 21, 84%) and bla CTX-M-1 group (n = 18, 72%) genes. The K2 serotype was found in 4% (n = 1) of the isolates, and the K1 was not detected. The virulence-associated genes found among the 25 isolates were mrkD (n = 24, 96%), fimH-1 (n = 22, 88%), entB (100%), iutA (n = 10, 40%), ybtS (n = 15, 60%). The genes related with efflux pumps and outer membrane porins found were AcrAB (100%), tolC (n = 24, 96%), mdtK (n = 22, 88%), OmpK35 (n = 15, 60%), and OmpK36 (n = 7, 28%). ERIC-PCR was employed to determine the clonal relationship between the different isolated strains. The obtained ERIC-PCR patterns revealed that the similarity between isolates was above 70%. To determine the sequence types (STs) a multilocus sequence typing (MLST) assay was used. The results indicated the presence of high-risk international clones among the isolates. In our study, the wide variety of MDR K. pneumoniae harboring β-lactams and virulence genes strongly suggest a necessity for the implementation of effective strategies to prevent and control the spread of antibiotic resistant infections.

140 citations


Journal ArticleDOI
TL;DR: It is demonstrated that an antibiotic‐naive microbiota suppresses growth of antibiotic‐resistant clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis by acidifying the proximal colon and triggering short chain fatty acid (SCFA)‐mediated intracellular acidification.
Abstract: Klebsiella pneumoniae, Escherichia coli, and other members of the Enterobacteriaceae family are common human pathogens that have acquired broad antibiotic resistance, rendering infection by some strains virtually untreatable. Enterobacteriaceae are intestinal residents, but generally represent <1% of the adult colonic microbiota. Antibiotic-mediated destruction of the microbiota enables Enterobacteriaceae to expand to high densities in the colon, markedly increasing the risk of bloodstream invasion, sepsis, and death. Here, we demonstrate that an antibiotic-naive microbiota suppresses growth of antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis by acidifying the proximal colon and triggering short chain fatty acid (SCFA)-mediated intracellular acidification. High concentrations of SCFAs and the acidic environment counter the competitive edge that O2 and NO3 respiration confer upon Enterobacteriaceae during expansion. Reestablishment of a microbiota that produces SCFAs enhances clearance of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis from the intestinal lumen and represents a potential therapeutic approach to enhance clearance of antibiotic-resistant pathogens.

127 citations


Journal ArticleDOI
TL;DR: A patient with a trauma-related left tibial infection associated with XDR Acinetobacter baumannii and MDR Klebsiella pneumoniae was treated with bacteriophages and antibiotics and his leg did not have to be amputated and he is undergoing rehabilitation.
Abstract: A patient with a trauma-related left tibial infection associated with extensively drug-resistant Acinetobacter baumannii and multidrug-resistant Klebsiella pneumoniae was treated with bacteriophages and antibiotics. There was rapid tissue healing and positive culture eradication. As a result, the patient's leg did not have to be amputated and he is undergoing rehabilitation.

127 citations


Journal ArticleDOI
TL;DR: This review highlights the most significant aspects of K. variicola, discussing its different phenotypes, mechanisms of resistance, and virulence traits, as well as the types of infections associated with this pathogen.
Abstract: The Klebsiella pneumoniae complex comprises seven K. pneumoniae-related species, including K. variicola. K. variicola is a versatile bacterium capable of colonizing different hosts such as plants, ...

121 citations


Journal ArticleDOI
TL;DR: Recent research is attempting to provide clues as to why some lineages appear better suited to acquisition and maintenance of MDR plasmids without a fitness cost, hinting at a process whereby these clones can outcompete commensal strains of the same species to initiate long-term intestinal colonization.

102 citations


Journal ArticleDOI
TL;DR: All the characterized phages were found to have a broad host range activity and the prepared phage cocktails were effective against mixed bacterial population that are resistant to meropenem and colistin, two last resort antibiotics.
Abstract: Infections due to antibiotic resistant bacteria are increasing globally and this needs immediate attention. Bacteriophages are considered an effective alternative for the treatment of bacterial infections. The aim of this study was to isolate and characterize the bacteriophages that infect Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. For this, clinical bacterial isolates of the mentioned species were obtained from diagnostic centers located in Chennai, Tamil Nadu, India. The bacteriophages were isolated from sewage water samples collected from Tamil Nadu, India. Phage isolation was performed using enrichment method and agar overlay method was used to confirm the presence of bacteriophages. All the phages were characterized for their life cycle parameters, genome analysis, and in vitro phage cocktail activity. The three bacteriophages exhibited broad host range activity: Escherichia virus myPSH2311 infecting E. coli belonging to six different pathotypes, Klebsiella virus myPSH1235 infecting K. pneumoniae belonging to four different serotypes and Enterobacter virus myPSH1140 infecting four different species of Enterobacter. Morphological observations suggested that the bacteriophages belonged to, Phieco32virus (Escherichia virus myPSH2311), Podoviridae (Klebsiella virus myPSH1235), and Myoviridae (Enterobacter virus myPSH1140). The life cycles (adsorption, latent period, and cell burst) of Escherichia virus myPSH2311, Klebsiella virus myPSH1235 and Enterobacter virus myPSH1140 were found to be 26, 40, and 11 min, respectively. Genomic analysis revealed that Escherichia virus myPSH2311 is closely related to Escherichia phage vB_EcoP_SU10, Klebsiella virus myPSH1235 is closely related to Klebsiella phage vB_KpnP_KpV48 and Enterobacter virus myPSH1140 is closely related to Enterobacter phage PG7 and Enterobacter phage CC31. When phage cocktail was used against multiple bacterial mixtures, there was a reduction in bacterial load from 106 to 103 CFU/mL within 2 h. All the three characterized phages were found to have a broad host range activity and the prepared phage cocktails were effective against mixed bacterial population that are resistant to meropenem and colistin, two last resort antibiotics. Infections caused by drug resistant bacteria will be a serious threat in the future and the use of virulent bacteriophages in therapy may offer an effective solution.

100 citations


Journal ArticleDOI
TL;DR: Most of the K. pneumoniae isolates demonstrated resistance to a wide range of antibiotics and are biofilm producers.
Abstract: Klebsiella pneumoniae (K. pneumoniae) is a common cause of health-care associated infections (HAIs) and has high levels of antibiotic resistance. These bacteria are well-known for their ability to produce biofilm. The purpose of this study was to identify the antibiotic resistance pattern and biofilm-producing capacity of K. pneumoniae isolated from clinical samples in a tertiary care hospital in Klaten, Indonesia. K. pneumoniae was isolated from inpatients in Soeradji Tirtonegoro Hospital Klaten from June 2017 to May 2018. Identification of K. pneumoniae isolate was done by analyzing colony morphology, microscopic examination, and by performing biochemical testing. Testing of antibiotics susceptibility and biofilm-producing capacity used the Kirby-Bauer disk diffusion method and adherence quantitative assays, respectively. A total of 167 (17.36%) K. pneumoniae isolates were isolated from 962 total clinical bacterial isolates during the study. Most of them were collected from patients aged more than 60 years old and were mainly obtained from respiratory specimens (51.50%). Most of K. pneumoniae isolates were extensively resistant to antibiotics. A more favorable profile was found only towards meropenem, amikacin, and piperacillin-tazobactam, showing 1.20%; 4.79% and 10.53% of resistance, respectively. The overall proportion of multidrug-resistant K. pneumoniae isolates was 54.49%. In addition, 148 (85.63%) isolates were biofilm producers, with 45 (26.95%) isolates as strong, 48 (28.74%) isolates as moderate, and 50 (29.94%) isolates as weak biofilm producers. Most of the K. pneumoniae isolates demonstrated resistance to a wide range of antibiotics and are biofilm producers.

Journal ArticleDOI
TL;DR: A systematic review summarizes and critically evaluates published studies of phages in clinical practice and presents the appropriate phage selection criteria, as well as recommendations for clinicians and scientists for a successful therapy.
Abstract: Bacteriophages (phages) may constitute a natural, safe, and effective strategy to prevent and control multidrug-resistant organisms (MDROs), and ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens in particular. Few clinical studies have assessed the safety and efficacy of phages in patients infected with MDROs. This systematic review summarizes and critically evaluates published studies of phages in clinical practice and presents the appropriate phage selection criteria, as well as recommendations for clinicians and scientists for a successful therapy. Articles were identified through a search of the PubMed, Ovid, EMBASE, and Cochrane Library databases. Among 1102 articles and abstracts, 30 studies were selected and evaluated using selective inclusion criteria, phage criteria, and study characteristics. Most studies showed efficacy (87%) and safety (67%) of the tested phages, but few studies examined phage resistance (35%). Clinical studies and regulatory changes are needed to determine the safety and efficacy of phages and to advance their use in patients with MDRO infections.

Journal ArticleDOI
TL;DR: This review describes the features of colistin resistance in K. pneumoniae and the characteristics of the currently available antimicrobials forcolistin-resistant MDR K. tuberculosis, as well as the characteristic of novel antimicrobial options, such as the soon-to-be commercially available plazomicin and cefiderocol.
Abstract: Multidrug-resistant (MDR) Klebsiella pneumoniae represents an increasing threat to human health, causing difficult-to-treat infections with a high mortality rate. Since colistin is one of the few treatment options for carbapenem-resistant K. pneumoniae infections, colistin resistance represents a challenge due to the limited range of potentially available effective antimicrobials, including tigecycline, gentamicin, fosfomycin and ceftazidime/avibactam. Moreover, the choice of these antimicrobials depends on their pharmacokinetics/pharmacodynamics properties, the site of infection and the susceptibility profile of the isolated strain, and is sometimes hampered by side effects. This review describes the features of colistin resistance in K. pneumoniae and the characteristics of the currently available antimicrobials for colistin-resistant MDR K. pneumoniae, as well as the characteristics of novel antimicrobial options, such as the soon-to-be commercially available plazomicin and cefiderocol. Finally, we consider the future use of innovative therapeutic strategies in development, including bacteriophages therapy and monoclonal antibodies.

Journal ArticleDOI
TL;DR: Biochemical characteristics and chromosomal beta-lactamase genes also distinguish groups Kp5 and Kp7 from other Klebsiella taxa.

Journal ArticleDOI
TL;DR: A conjugative plasmid that can transfer high-level virulence to Klebsiella pneumoniae strains is discovered and may promote rapid dissemination of virulence-encoding elements among Gram-negative bacterial pathogens.
Abstract: A virulence-encoding plasmid, p15WZ-82_Vir, which formed as a result of the integration of a 100-kb fragment of the hypervirulence plasmid pLVPK into a conjugative IncFIB plasmid, was recovered from a clinical Klebsiella variicola strain. Such a plasmid could be conjugated to carbapenem-resistant Klebsiella strains, enabling them to simultaneously express the carbapenem resistance- and hypervirulence-associated phenotypes. Unlike the non-conjugative pLVPK plasmid, emergence of p15WZ-82_Vir may promote rapid dissemination of virulence-encoding elements among Gram-negative bacterial pathogens.

Journal ArticleDOI
TL;DR: The presence of both virulence and AMR determinants on a single vector enables simultaneous transfer in a single event and potentially rapid emergence of hv-MDR K. pneumoniae clones, highlighting the importance of monitoring for such convergence events with stringent genomic surveillance.
Abstract: BACKGROUND: MDR and hypervirulence (hv) are typically observed in separate Klebsiella pneumoniae populations. However, convergent strains with both properties have been documented and potentially pose a high risk to public health in the form of invasive infections with limited treatment options. OBJECTIVES: Our aim was to characterize the genetic determinants of virulence and antimicrobial resistance (AMR) in two ESBL-producing K. pneumoniae isolates belonging to the international MDR clone ST15. METHODS: The complete genome sequences of both isolates, including their plasmids, were resolved using Illumina and Oxford Nanopore sequencing. RESULTS: Both isolates carried large mosaic plasmids in which AMR and virulence loci have converged within the same vector. These closely related mosaic hv-MDR plasmids include sequences typical of the K. pneumoniae virulence plasmid 1 (KpVP-1; including aerobactin synthesis locus iuc) fused with sequences typical of IncFIIK conjugative AMR plasmids. One hv-MDR plasmid carried three MDR elements encoding the ESBL gene blaCTX-M-15 and seven other AMR genes (blaTEM, aac3'-IIa, dfrA1, satA2, blaSHV, sul1 and aadA1). The other carried remnants of these elements encoding blaTEM and aac3'-IIa, and blaCTX-M-15 was located in a second plasmid in this isolate. The two isolates originated from patients hospitalized in Norway but have epidemiological and genomic links to Romania. CONCLUSIONS: The presence of both virulence and AMR determinants on a single vector enables simultaneous transfer in a single event and potentially rapid emergence of hv-MDR K. pneumoniae clones. This highlights the importance of monitoring for such convergence events with stringent genomic surveillance.

Journal ArticleDOI
TL;DR: Results suggest that combination of the identified novel depolymerase Dep42, encoded by the phage SH-KP152226, with antibiotics may represent a promising strategy to combat infections caused by drug-resistant and biofilm-forming K. pneumoniae.
Abstract: The increasing prevalence of infections caused by multidrug-resistant Klebsiella pneumoniae necessitates the development of alternative therapies. Here, we isolated, characterized, and sequenced a K. pneumoniae bacteriophage (SH-KP152226) that specifically infects and lyses K. pneumoniae capsular type K47. The phage SH-KP152226 contains a genome of 41,420 bp that encodes 48 predicted proteins. Among these proteins, Dep42, the gene product of ORF42, is a putative tail fiber protein and hypothetically possesses depolymerase activity. We demonstrated that recombinant Dep42 showed specific enzymatic activities in the depolymerization of the K47 capsule of K. pneumoniae and was able to significantly inhibit biofilm formation and/or degrade formed biofilms. We also showed that Dep42 could enhance polymyxin activity against K. pneumoniae biofilms when used in combination with antibiotics. These results suggest that combination of the identified novel depolymerase Dep42, encoded by the phage SH-KP152226, with antibiotics may represent a promising strategy to combat infections caused by drug-resistant and biofilm-forming K. pneumoniae.

Journal ArticleDOI
TL;DR: The crystal structure of a clinical ST258 OmpK36 variant is solved, elucidating the mechanism of resistance and consequences on pathogenicity in vivo, and it is suggested that the continuous selective pressure imposed by widespread Carbapenem utilisation in hospital settings drives the expansion of KP expressing Gly-Asp insertion mutants, despite an associated fitness cost.
Abstract: Carbapenem-resistance in Klebsiella pneumoniae (KP) sequence type ST258 is mediated by carbapenemases (e.g. KPC-2) and loss or modification of the major non-selective porins OmpK35 and OmpK36. However, the mechanism underpinning OmpK36-mediated resistance and consequences of these changes on pathogenicity remain unknown. By solving the crystal structure of a clinical ST258 OmpK36 variant we provide direct structural evidence of pore constriction, mediated by a di-amino acid (Gly115-Asp116) insertion into loop 3, restricting diffusion of both nutrients (e.g. lactose) and Carbapenems. In the presence of KPC-2 this results in a 16-fold increase in MIC to Meropenem. Additionally, the Gly-Asp insertion impairs bacterial growth in lactose-containing medium and confers a significant in vivo fitness cost in a murine model of ventilator-associated pneumonia. Our data suggests that the continuous selective pressure imposed by widespread Carbapenem utilisation in hospital settings drives the expansion of KP expressing Gly-Asp insertion mutants, despite an associated fitness cost.

Journal ArticleDOI
TL;DR: CZA in combination with amikacin (AMK), aztreonam (AZT), colistin (COL), fosfomycin (FOS), and meropenem (MEM) against 21 carbapenem-resistant Klebsiella pneumoniae and 21 MDR Pseudomonas aeruginosa strains shows potential for therapeutic options in difficult to treat pathogens.
Abstract: Multidrug-resistant (MDR) Gram-negative organisms are a major health concern due to lack of effective therapy. Emergence of resistance to newer agents like ceftazidime-avibactam (CZA) further magnifies the problem. In this context, combination therapy of CZA with other antimicrobials may have potential in treating these pathogens. Unfortunately, there are limited data regarding these combinations. Therefore, the objective of this study was to evaluate CZA in combination with amikacin (AMK), aztreonam (AZT), colistin (COL), fosfomycin (FOS), and meropenem (MEM) against 21 carbapenem-resistant Klebsiella pneumoniae and 21 MDR Pseudomonas aeruginosa strains. The potential for synergy was evaluated via MIC combination evaluation and time-kill assays. All strains were further characterized by whole-genome sequencing, quantitative real-time PCR, and SDS-PAGE analysis to determine potential mechanisms of resistance. Compared to CZA alone, we observed a 4-fold decrease in CZA MICs for a majority of K. pneumoniae strains and at least a 2-fold decrease for most P. aeruginosa isolates in the majority of combinations tested. In both P. aeruginosa and K. pneumoniae strains, CZA in combination with AMK or AZT was synergistic (≥2.15-log10 CFU/ml decrease). CZA-MEM was effective against P. aeruginosa and CZA-FOS was effective against K. pneumoniae Time-kill analysis also revealed that the synergy of CZA with MEM or AZT may be due to the previously reported restoration of MEM or AZT activity against these organisms. Our findings show that CZA in combination with these antibiotics has potential for therapeutic options in difficult to treat pathogens. Further evaluation of these combinations is warranted.

Journal ArticleDOI
TL;DR: Treatment-emergent ceftazidime-avibactam resistance is increasingly recognized, suggesting a role for meropenem-vaborbactam in liver transplantation.
Abstract: We report a case of a 24-year-old liver transplant recipient who developed hepatic artery thrombosis and graft failure, which was complicated by subphrenic abscess and persistent Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae bacteremia. Ceftazidime-avibactam treatment led to emergence of resistance, and alternative combination therapy failed due to persistent infection and toxicity. The infection resolved after initiation of meropenem-vaborbactam, which created a bridge to retransplantation. Treatment-emergent ceftazidime-avibactam resistance is increasingly recognized, suggesting a role for meropenem-vaborbactam.

Journal ArticleDOI
Dandan Yin1, Shi Wu1, Yang Yang1, Qingyu Shi1, Dong Dong1, Demei Zhu1, Fupin Hu1 
TL;DR: Overall, both ceftazidime-avibactam and ceftolozane-tazobactam were highly active against clinical isolates of Enterobacteriaceae and P. aeruginosa recently collected across China, and ceFTazidimesavibactsam showed activity superior to that of ceftlozane -tazabactam against Enterobacteriaiaceae.
Abstract: The in vitro activities of ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C-T), and comparators were determined for 1,774 isolates of Enterobacteriaceae and 524 isolates of Pseudomonas aeruginosa collected by 30 medical centers from the China Antimicrobial Surveillance Network (CHINET) in 2017. Antimicrobial susceptibility testing was performed by the CLSI broth microdilution method, and blaKPC and blaNDM were detected by PCR for all carbapenem-resistant Enterobacteriaceae (CRE). Ceftazidime-avibactam demonstrated potent activity against almost all Enterobacteriaceae (94.6% susceptibility; MIC50, ≤0.25 mg/liter; MIC90, ≤0.25 to >32 mg/liter) and good activity against P. aeruginosa (86.5% susceptibility; MIC50/90, 2/16 mg/liter). Among the CRE, 50.8% (189/372 isolates) were positive for blaKPC-2, which mainly existed in ceftazidime-avibactam-susceptible Klebsiella pneumoniae isolates (92.1%, 174/189). Among the CRE, 17.7% (66/372 isolates) were positive for blaNDM, which mainly existed in strains resistant to ceftazidime-avibactam (71.7%, 66/92). Ceftolozane-tazobactam showed good in vitro activity against Escherichia coli and Proteus mirabilis (MIC50/90, ≤0.5/2 mg/liter; 90.5 and 93.8% susceptibility, respectively), and the rates of susceptibility of K. pneumoniae (MIC50/90, 2/>64 mg/liter) and P. aeruginosa (MIC50/90, 1/8 mg/liter) were 52.7% and 88.5%, respectively. Among the CRE strains, 28.6% of E. coli isolates and 85% of K. pneumoniae isolates were still susceptible to ceftazidime-avibactam, but only 7.1% and 1.9% of them, respectively, were susceptible to ceftolozane-tazobactam. The rates of susceptibility of the carbapenem-resistant P. aeruginosa isolates to ceftazidime-avibactam (65.7%) and ceftolozane-tazobactam (68%) were similar. Overall, both ceftazidime-avibactam and ceftolozane-tazobactam were highly active against clinical isolates of Enterobacteriaceae and P. aeruginosa recently collected across China, and ceftazidime-avibactam showed activity superior to that of ceftolozane-tazobactam against Enterobacteriaceae, whereas ceftolozane-tazobactam showed a better effect against P. aeruginosa.

Journal ArticleDOI
06 Sep 2019
TL;DR: Virulence plasmids in nosocomial isolates of “high-risk” clones of sequence types (STs) 15, 48, 101, 147 and 383 carrying carbapenemase genes are described.
Abstract: Virulence plasmids are associated with hypervirulent types of Klebsiella pneumoniae, which generally do not carry antibiotic resistance genes. In contrast, nosocomial isolates are often associated with resistance, but rarely with virulence plasmids. Here, we describe virulence plasmids in nosocomial isolates of “high-risk” clones of sequence types (STs) 15, 48, 101, 147 and 383 carrying carbapenemase genes. The whole genome sequences were determined by long-read nanopore sequencing. The 12 isolates all contained hybrid plasmids containing both resistance and virulence genes. All carried rmpA/rmpA2 and the aerobactin cluster, with the virulence plasmids of two of three representatives of ST383 carrying blaNDM-5 and seventeen other resistance genes. Representatives of ST48 and ST15 had virulence plasmid-associated genes distributed between two plasmids, both containing antibiotic resistance genes. Representatives of ST101 were remarkable in all sharing virulence plasmids in which iucC and terAWXYZ were missing and iucB and iucD truncated. The combination of resistance and virulence in plasmids of high-risk clones is extremely worrying. Virulence plasmids were often notably consistent within a lineage, even in the absence of epidemiological links, suggesting they are not moving between types. However, there was a common segment containing multiple resistance genes in virulence plasmids of representatives of both STs 48 and 383.

Journal ArticleDOI
TL;DR: A high frequency of colistin resistance in enterobacterial strains isolated from cancer patients, but a low prevalence of the most well known resistance mechanisms are demonstrated.
Abstract: Colistin resistance is mainly driven by alterations in the Gram-negative outer membrane lipopolysaccharides and is caused, in most cases, by mutations in mgrB gene. However, the recent emergence of plasmid-encoded colistin resistance among Enterobacteriaceae strains represents a serious threat to global public health. In this paper we have investigated the rates of colistin resistance and the underlying mechanisms in 450 Klebsiella pneumoniae and Escherichia coli isolates obtained from cancer patients in Egypt. Colistin susceptibility and minimum inhibitory concentrations were determined according to the European Committee on Antimicrobial Susceptibility Testing, by broth microdilution, and by E-test. The mcr-1, mcr-2 and mgrB genes were detected by PCR and then sequenced. Clonal diversity in colistin-resistant K. pneumoniae was evaluated by multilocus sequence typing. Forty (8.8%) colistin-resistant isolates, including 22 K. pneumoniae and 18 E. coli, were isolated over 18 months. Of these, 50% were carbapenem-resistant, out of which nine were blaOXA-48 and seven blaNDM-1 positive. The mechanisms of colistin resistance could be revealed only in three of the 40 resistant strains, being represented by mcr-1 in one blaNDM-1-positive E. coli strain and in one K. pneumoniae ST11 and by mgrB mutations, detected in one K. pneumoniae isolate. None of the studied isolates harbored mcr-2. Our results demonstrate a high frequency of colistin resistance in enterobacterial strains isolated from cancer patients, but a low prevalence of the most well known resistance mechanisms.

Journal ArticleDOI
TL;DR: The identification of mCr-8 and its variant, mcr-8.4, in Raoultella ornithinolytica isolates which also belong to Enterobacteriaceae family and the transferability of mCR-8-carrying plasmids was enhanced once they entered into Escherichia coli hosts and multiple β-lactamase genes could co-transfer with mcr -8.
Abstract: Recently, a novel mobile colistin resistance gene, mcr-8, was identified in Klebsiella pneumoniae. Here, we report the identification of mcr-8 and its variant, mcr-8.4, in Raoultella ornithinolytica isolates which also belong to Enterobacteriaceae family. The mcr-8 gene was located on transferrable plasmids with difference sizes. Notably, the transferability of mcr-8-carrying plasmids was enhanced once they entered into E. coli hosts and multiple β-lactamase genes could co-transfer with mcr-8. These findings expand our knowledge of mcr-8-carrying bacterial species.

Journal ArticleDOI
TL;DR: The presence of colistin-resistant (Col-R) bacteria and the mcr-1 gene in raw food samples further complicates the antimicrobial resistance scenario in India.
Abstract: Objectives Numerous previous publications on the detection of bacterial isolates harbouring the mcr-1 gene from animals and humans strongly suggest an underlying route of transmission of colistin resistance via the food chain. The aim of this study was to investigate the presence of colistin-resistant (Col-R) bacteria in Indian food samples and to identify the underlying mechanisms conferring colistin resistance. Methods Raw food material, including poultry meat, mutton meat, fish, fruit and vegetables, collected from food outlets in Chennai, India, were processed to identify Col-R bacteria using eosin methylene blue agar supplemented with colistin. Colistin minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. PCR for the mcr-1 and mcr-3 genes was performed on Col-R Escherichia coli and Klebsiella pneumoniae isolates. Mutations in the mgrB gene were analysed in K. pneumoniae isolates. One representative mcr-1-positive E. coli was subjected to whole-genome sequencing. Results Of 110 food samples tested, 51 (46.4%) were positive for non-intrinsic Col-R Gram-negative bacteria. Three E. coli isolates were found to harbour mcr-1, whereas none were positive for mcr-3. Ten K. pneumoniae isolates had alterations in mgrB, with mutations in four and insertional inactivation in six. Conclusion The presence of Col-R bacteria and the mcr-1 gene in raw food samples further complicates the antimicrobial resistance scenario in India. To the best of our knowledge, this is the first report in the global literature on mgrB mutation and its insertional inactivation conferring Col-R in K. pneumoniae from food samples.

Journal ArticleDOI
TL;DR: The population structure, antimicrobial resistance and virulence genes of Klebsiella spp.
Abstract: Objectives To characterize the population structure, antimicrobial resistance and virulence genes of Klebsiella spp. isolated from dogs, cats and humans with urinary tract infections (UTIs). Methods Klebsiella spp. from companion animals (n = 27) and humans (n = 77) with UTI were tested by the disc diffusion method against 29 antimicrobials. Resistant/intermediate isolates were tested by PCR for 16 resistance genes. Seven virulence genes were screened for by PCR. All Klebsiella pneumoniae from companion animals and third-generation cephalosporin (3GC)-resistant isolates from humans were typed by MLST. All Klebsiella spp. were compared after PFGE XbaI macro-restriction using Dice/UPGMA with 1.5% tolerance. Results bla CTX-M-15 was detected in >80% of 3GC-resistant strains. K. pneumoniae high-risk clonal lineage ST15 predominated in companion animal isolates (60%, n = 15/25). Most companion animal ST15 K. pneumoniae belonged to two PFGE clusters (C4, C5) that also included human strains. Companion animal and human ST15-CTX-M-15 K. pneumoniae shared a fimH-1/mrkD/entB/ycfM/kfu virulence profile, with a few (n = 4) also harbouring the yersiniabactin siderophore-encoding genes. The hospital-adapted ST11 K. pneumoniae clonal lineage was detected in a cat (n = 1) and a human (n = 1); both were MDR, had 81.1% Dice/UPGMA similarity and shared several virulence and resistance genes. Two 3GC-resistant ST348 strains with 86.7% Dice/UPGMA similarity were isolated from a cat and a human. Conclusions Companion animals with UTI become infected with high-risk K. pneumoniae clonal lineages harbouring resistance and virulence genes similar to those detected in strains from humans. The ST15-CTX-M-15 K. pneumoniae clonal lineage was disseminated in companion animals with UTI. Caution must be applied by companion animal caretakers to avoid the spread of K. pneumoniae high-risk clonal lineages.

Journal ArticleDOI
16 May 2019
TL;DR: There is an overlap between virulence and multidrug resistance for hospital-acquired UTI K. pneumoniae pathogens, despite the production of β-lactamase and even with the presence of CTX-M-15 ESBL, a successful international ST15 clone, which were identified in both settings.
Abstract: Klebsiella pneumoniae is a clinically relevant pathogen and a frequent cause of hospital-acquired (HA) and community-acquired (CA) urinary tract infections (UTI). The increased resistance of this pathogen is leading to limited therapeutic options. To investigate the epidemiology, virulence, and antibiotic resistance profile of K. pneumoniae in urinary tract infections, we conducted a multicenter retrospective study for a total of 81 isolates (50 CA-UTI and 31 HA-UTI) in Portugal. The detection and characterization of resistance and virulence determinants were performed by molecular methods (PCR, PCR-based replicon typing, and multilocus sequence typing (MLST)). Out of 50 CA-UTI isolates, six (12.0%) carried β-lactamase enzymes, namely blaTEM-156 (n = 2), blaTEM-24 (n = 1), blaSHV-11 (n = 1), blaSHV-33 (n = 1), and blaCTX-M-15 (n = 1). All HA-UTI were extended-spectrum β-lactamase (ESBL) producers and had a multidrug resistant profile as compared to the CA-UTI isolates, which were mainly resistant to ciprofloxacin, levofloxacin, tigecycline, and fosfomycin. In conclusion, in contrast to community-acquired isolates, there is an overlap between virulence and multidrug resistance for hospital-acquired UTI K. pneumoniae pathogens. The study is the first to report different virulence characteristics for hospital and community K. pneumoniae pathogens, despite the production of β-lactamase and even with the presence of CTX-M-15 ESBL, a successful international ST15 clone, which were identified in both settings. This highlights that a focus on genomic surveillance should remain a priority in the hospital environment.

Journal ArticleDOI
TL;DR: This study aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the immune system’s response to E.coli.
Abstract: Hypervirulent Klebsiella pneumoniae (hvKp) is an increasingly recognized pathotype of K. pneumoniae characterized clinically by its ability to cause organ- or life-threatening infections in healthy...

Journal ArticleDOI
TL;DR: The identification of virulence factors and antibiotic resistance genes acquired by this newly emerging clone provides insight into the reported increased mortality rates and highlights its potential success as a persistent nosocomial pathogen.
Abstract: The global dissemination of Klebsiella pneumoniae and Klebsiella pneumoniae carbapenemase (KPC) has been largely attributed to a few high-risk sequence types (STs) (ST258, ST11, ST512) associated with human disease. ST101 is an emerging clone that has been identified in different parts of the world with the potential to become a global, persistent public health threat. Recent research suggests the ST101 lineage is associated with an 11% increase in mortality rate in comparison to non-ST101 infections. In this study, we generated a high-quality, near-finished genome assembly of a multidrug resistant (MDR) isolate from Italy (isolate 4743) that is a single locus variant of ST101 (ST1685). We demonstrate that the 4743 genome contains virulence features such as an integrative conjugative element carrying the yersiniabactin siderophore (ICEKp3), the mannose-resistant Klebsiella-like (type III) fimbriae cluster (mrkABCDFHIJ), the ferric uptake system (kfuABC), the yersiniabactin receptor gene fyuA, a capsular K type K17, and an O antigen type of O1. K. pneumoniae 4743 carries the blaKPC-2 carbapenemase gene along with genes conferring resistance to aminoglycosides, beta-lactams, fluoroquinolones, fosfomycin, macrolides, lincosamides, and streptogramin B. A comparative genomics analysis of 44 ST101 genomes as well as newly sequenced isolate 4743 identified variable antimicrobial resistance (AMR) resistance profiles and incompatibility plasmid types, but similar virulence factor profiles. Using Bayesian methodologies, we estimate the common ancestor for the ST101 lineage emerged in 1990 (95% HPD: 1965 to 2007) and isolates within the lineage acquired blaKPC after the divergence from its parental clonal group and dissemination. The identification of virulence factors and antibiotic resistance genes acquired by this newly emerging clone provides insight into the reported increased mortality rates and highlights its potential success as a persistent nosocomial pathogen. With a combination of both colistin resistance, carbapenem resistance, and several known virulence factors, the ST101 genetic repertoire may be a “perfect storm” allowing for a newly emerging, high-risk, extensively antibiotic resistant clone. This high-risk clone appears adept at acquiring resistance and may perpetuate the dissemination of extensive antimicrobial resistance. Greater focus on the acquisition of virulence factors and antibiotic resistance genes is crucial for understanding the spread of antibiotic resistance.

Journal ArticleDOI
TL;DR: A novel L169P mutation was identified in KPC-2 and was shown through cloning experiments to confer reduced susceptibility to ceftazidime/avibactam and increased susceptibility to carbapenems, as compared with K PC-2.
Abstract: Objectives Ceftazidime/avibactam resistance due to mutation in the omega loop of KPC-2 has been documented in vitro and in vivo. This study evaluated the mechanism of ceftazidime/avibactam resistance in a KPC-2-expressing Klebsiella pneumoniae isolated from a patient following ceftazidime/avibactam combination therapy with gentamicin for the treatment of ventilator-associated pneumonia. Methods Ceftazidime/avibactam-susceptible and -resistant isolates of K. pneumoniae were evaluated by broth microdilution and WGS. The KPC-2 gene was cloned from the ceftazidime/avibactam-resistant isolate and evaluated for susceptibility to ceftazidime/avibactam, in an Escherichia coli background. Results A single L169P mutation was identified in the KPC-2 gene between the ceftazidime/avibactam-resistant and -susceptible isolates. The novel KPC-2 allele, designated KPC-35, was shown to confer reduced susceptibility to ceftazidime/avibactam and increased susceptibility to carbapenems, as compared with KPC-2. Conclusions A novel L169P mutation was identified in KPC-2 and was shown through cloning experiments to confer reduced susceptibility to ceftazidime/avibactam.