scispace - formally typeset
Search or ask a question

Showing papers on "Multipath propagation published in 2014"


Journal ArticleDOI
TL;DR: Cl clustering results for a double-directional 60 GHz MIMO channel model are presented and it is shown that the cluster angular characteristics are closely related to the room geometry and environment, making it infeasible to model the delay and angular domains independently.
Abstract: Efficient and realistic mm-wave channel models are of vital importance for the development of novel mm-wave wireless technologies. Though many of the current 60 GHz channel models are based on the useful concept of multipath clusters, only a limited number of 60 GHz channel measurements have been reported in the literature for this purpose. Therefore, there is still a need for further measurement based analyses of multipath clustering in the 60 GHz band. This paper presents clustering results for a double-directional 60 GHz MIMO channel model. Based on these results, we derive a model which is validated with measured data. Statistical cluster parameters are evaluated and compared with existing channel models. It is shown that the cluster angular characteristics are closely related to the room geometry and environment, making it infeasible to model the delay and angular domains independently. We also show that when using ray tracing to model the channel, it is insufficient to only consider walls, ceiling, floor and tables; finer structures such as ceiling lamps, chairs and bookshelves need to be taken into account as well.

276 citations


Proceedings ArticleDOI
18 Aug 2014
TL;DR: This paper designs and implements a generic modular scheduler framework and uses this framework to do an in-depth analysis of different schedulers for Multipath TCP, and considers bulk data transfer as well as application limited traffic and identify metrics to quantify the scheduler's performance.
Abstract: Today many end hosts are equipped with multiple interfaces. These interfaces can be utilized simultaneously by multipath protocols to pool resources of the links in an efficient way while also providing resilience to eventual link failures. However how to schedule the data segments over multiple links is a challenging problem, and highly influences the performance of multipath protocols.In this paper, we focus on different schedulers for Multipath TCP. We first design and implement a generic modular scheduler framework that enables testing of different schedulers for Multipath TCP. We then use this framework to do an in-depth analysis of different schedulers by running emulated and real-world experiments on a testbed. We consider bulk data transfer as well as application limited traffic and identify metrics to quantify the scheduler's performance. Our results shed light on how scheduling decisions can help to improve multipath transfer.

271 citations


Patent
21 Oct 2014
TL;DR: In this paper, a system and method for measuring an item's dimensions using a time-of-flight dimensioning system is described, in which an adjustable aperture's size, shape, and position are controlled so that the light beam used in the time of flight analysis substantially illuminates the illumination region without first being reflected.
Abstract: A system and method for measuring an item's dimensions using a time-of-flight dimensioning system is disclosed. The system and method mitigate multipath distortion and improve the accuracy of the measurements, especially in a mobile environment. To mitigate the multipath distortion, an imager captures an image of an item of interest. This image is processed to determine an illumination region corresponding item-of-interest's size, shape, and position. Using this information, an adjustable aperture's size, shape, and position are controlled so the light beam used in the time-of-flight analysis substantially illuminates the illumination region without first being reflected.

256 citations


Book
03 Jun 2014
TL;DR: In this paper, the authors describe the processing techniques central to underwater OFDM, which is arranged into four distinct sections: first, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels.
Abstract: A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network developmentThis book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver design in systems with single or multiple transmitters. This is the main body of the book. Extensive experimental data sets are used to verify the receiver performance. In the third part, the authors discuss applications of the OFDM receiver in i) deep water channels, which may contain very long separated multipath clusters, ii) interference-rich environments, where an unintentional interference such as Sonar will be present, and iii) a network with multiple users where both non-cooperative and cooperative underwater communications are developed. Lastly, it describes the development of a positioning system with OFDM waveforms, and the progress on the OFDM modem development. Closely related industries include the development and manufacturing of autonomous underwater vehicles (AUVs) and scientific sensory equipment. AUVs and sensors in the future could integrate modems, based on the OFDM technology described in this book.Contents includes: Underwater acoustic channel characteristics/OFDM basics/Peak-to-average-ratio control/Detection and Doppler estimation (Doppler scale and CFO)/Channel estimation and noise estimation/A block-by-block progressive receiver and performance results/Extensions to multi-input multi-output OFDM/Receiver designs for multiple users/Cooperative underwater OFDM (Physical layer network coding and dynamic coded cooperation)/Localization with OFDM waveforms/Modem developmentsA valuable resource for Graduate and postgraduate students on electrical engineering or physics courses; electrical engineers, underwater acousticians, communications engineers

205 citations


Proceedings ArticleDOI
10 Jun 2014
TL;DR: Results that support the use of directional steerable antennas at mmWave bands in order to achieve comparable path loss models and channel statistics to today's current cellular systems and at 28 GHz are presented.
Abstract: The spectrum congestion experienced in today's common cellular bands has led to research and measurements to explore the vast bandwidths available at millimeter waves (mmWaves). NYU WIRELESS conducted E-band propagation measurements for both mobile and backhaul scenarios in 2013 in the dense urban environment of New York City using a sliding correlator channel sounder, by transmitting a 400 Mega chip per second (Mcps) PN sequence with a power delay profile (PDP) multipath time resolution of 2.5 ns. Measurements were made for more than 30 transmitter-to-receiver location combinations for both mobile and backhaul scenarios with separation distances up to 200 m. This paper presents results that support the use of directional steerable antennas at mmWave bands in order to achieve comparable path loss models and channel statistics to today's current cellular systems and at 28 GHz. These early results reveal that the mmWave spectrum, specifically the E-band, could be used for future cellular communications by exploiting multipath in urban environments with the help of beam-steering and beam combining.

199 citations


Journal ArticleDOI
TL;DR: The results show that it is essential that routing, MAC, and retransmission schemes need to be smart to avoid bursts of transmission failures and quantify the temporal correlation of the interference and outage in mobile Poisson networks in terms of the correlation coefficient and conditional outage probability.
Abstract: In mobile networks, distance variations caused by node mobility generate fluctuations in the channel gains. Such fluctuations can be treated as another type of fading besides multipath effects. In this paper, the interference statistics in mobile random networks are characterized by incorporating the distance variations of mobile nodes to the channel gain fluctuations. The mean interference is calculated at the origin and at the border of a finite mobile network. The network performance is evaluated in terms of the outage probability. Compared to a static network, the interference in a single snapshot does not change under uniform mobility models. However, random waypoint mobility increases (decreases) the interference at the origin (at the border). Furthermore, due to the correlation of the node locations, the interference and outage are temporally and spatially correlated. We quantify the temporal correlation of the interference and outage in mobile Poisson networks in terms of the correlation coefficient and conditional outage probability, respectively. The results show that it is essential that routing, MAC, and retransmission schemes need to be smart (i.e., correlation-aware) to avoid bursts of transmission failures.

182 citations


Journal ArticleDOI
TL;DR: The results show that phase noise has a severe effect on self-interference cancellation in both of the considered cases, and that by using the common oscillator in upconversion and downconversion results in clearly lower residual self- interference levels.
Abstract: This paper addresses the analysis of oscillator phase-noise effects on the self-interference cancellation capability of full-duplex direct-conversion radio transceivers. Closed-form solutions are derived for the power of the residual self-interference stemming from phase noise in two alternative cases of having either independent oscillators or the same oscillator at the transmitter and receiver chains of the full-duplex transceiver. The results show that phase noise has a severe effect on self-interference cancellation in both of the considered cases, and that by using the common oscillator in upconversion and downconversion results in clearly lower residual self-interference levels. The results also show that it is in general vital to use high quality oscillators in full-duplex transceivers, or have some means for phase noise estimation and mitigation in order to suppress its effects. One of the main findings is that in practical scenarios the subcarrier-wise phase-noise spread of the multipath components of the self-interference channel causes most of the residual phase-noise effect when high amounts of self-interference cancellation is desired.

169 citations


Journal ArticleDOI
TL;DR: The proposed distortion-aware concurrent multipath transfer (CMT-DA) solution includes three phases: 1) per-path status estimation and congestion control; 2) quality-optimal video flow rate allocation; 3) delay and loss controlled data retransmission.
Abstract: The massive proliferation of wireless infrastructures with complementary characteristics prompts the bandwidth aggregation for Concurrent Multipath Transfer (CMT) over heterogeneous access networks. Stream Control Transmission Protocol (SCTP) is the standard transport-layer solution to enable CMT in multihomed communication environments. However, delivering high-quality streaming video with the existing CMT solutions still remains problematic due to the stringent QoS (Quality of Service) requirements and path asymmetry in heterogeneous wireless networks. In this paper, we advance the state of the art by introducing video distortion into the decision process of multipath data transfer. The proposed Distortion-Aware Concurrent Multipath Transfer (CMT-DA) solution includes three phases: 1) per-path status estimation and congestion control; 2) quality-optimal video flow rate allocation; 3) delay and loss controlled data retransmission. The term `flow rate allocation' indicates dynamically picking appropriate access networks and assigning the transmission rates. We analytically formulate the data distribution over multiple communication paths to minimize the end-to-end video distortion and derive the solution based on the utility maximization theory. The performance of the proposed CMT-DA is evaluated through extensive semi-physical emulations in Exata involving H.264 video streaming. Experimental results show that CMT-DA outperforms the reference schemes in terms of video PSNR (Peak Signal-to-Noise Ratio), goodput, and inter-packet delay.

163 citations


Journal ArticleDOI
TL;DR: In this paper, the problem of finding the candidate that minimizes the residual is modeled as a combinatoric tree search problem and the greedy search strategy is a good fit for solving this problem.
Abstract: In this paper, we propose an algorithm referred to as multipath matching pursuit (MMP) that investigates multiple promising candidates to recover sparse signals from compressed measurements. Our method is inspired by the fact that the problem to find the candidate that minimizes the residual is readily modeled as a combinatoric tree search problem and the greedy search strategy is a good fit for solving this problem. In the empirical results as well as the restricted isometry property-based performance guarantee, we show that the proposed MMP algorithm is effective in reconstructing original sparse signals for both noiseless and noisy scenarios.

162 citations


Journal ArticleDOI
TL;DR: A fully polarimetric forward model is presented, accounting for right- and left-handed circularly polarized components of the GPS broadcast signal and of the antenna and surface responses as well, and was used to understand the multipath signature in GPS positioning applications.
Abstract: Multipath is detrimental for both GPS positioning and timing applications. However, the benefits of GPS multipath for reflectometry have become increasingly clear for soil moisture, snow depth, and vegetation growth monitoring. Most multipath forward models focus on the code modulation, adopting arbitrary values for the reflection power, phase, and delay, or they calculate the reflection delay based on a given geometry and keep reflection power empirically defined. Here, a fully polarimetric forward model is presented, accounting for right- and left-handed circularly polarized components of the GPS broadcast signal and of the antenna and surface responses as well. Starting from the fundamental direct and reflected voltages, we have defined the interferometric and error voltages, which are of more interest in reflectometry and positioning applications. We examined the effect of varying coherence on signal-to-noise ratio, carrier phase, and code pseudorange observables. The main features of the forward model are subsequently illustrated as they relate to the broadcast signal, reflector height, random surface roughness, surface material, antenna pattern, and antenna orientation. We demonstrated how the antenna orientation--upright, tipped, or upside-down--involves a number of trade-offs regarding the neglect of the antenna gain pattern, the minimization of CDMA self-interference, and the maximization of the number of satellites visible. The forward model was also used to understand the multipath signature in GPS positioning applications. For example, we have shown how geodetic GPS antennas offer little impediment for the intake of near-grazing reflections off natural surfaces, in contrast to off metal, because of the lack of diversity with respect to the direct signal--small interferometric delay and Doppler, same sense of polarization, and similar direction of arrival.

145 citations


Journal ArticleDOI
TL;DR: In this article, an indoor positioning system using white lighting LEDs is analyzed and the performance of the positioning system is determined by the layout of LEDs, the receiver circuit, incidence angle of light, LED light source, and the photodiode.
Abstract: This paper analyzes an indoor positioning system using white lighting LEDs. The performance of the positioning system is determined by the layout of LEDs, the receiver circuit, incidence angle of light, LED light source, and the photodiode. The Cramer–Rao bound as the theoretical accuracy limitation of received signal strength indicator algorithm is derived. The influences to positioning accuracy of multipath reflections and unparallel optical axis of LEDs and receivers are analyzed in certain scenarios. It is concluded that if the diffuse channel gain is measured previously in a certain environment and the modulation speed is far less than the channel cutoff frequency, the theoretical accuracy limit is not affected by multipath link. Multiple noises of system are analyzed in detail. The influence to positioning accuracy of indoor uniform illumination is also discussed. The result proves that the theoretical estimated accuracy of triangular LEDs array is higher than square LEDs array. With typical parameter values, the simulated theoretical accuracy of system is up to the level of centimeter.

Journal ArticleDOI
TL;DR: This work develops effective methods for the reconstruction of stationary scenes, which employ a group sparse CS approach joining wall and target models, which allows suppression of the ghosts and increased signal-to-clutter ratio (SCR) at the target locations.
Abstract: Multipath exploitation and compressive sensing (CS) have both been applied independently to through-the-wall radar imaging (TWRI). Fast and efficient data acquisition is desired in scenarios where multipath effects cannot be neglected. Hence, we combine the two methods to achieve good image reconstruction in multipath environments from few spatial and frequency measurements. Ghost targets appear in the scene primarily due to specular reflections from interior walls and multiple reflections within the front wall. Assuming knowledge of the room geometry, we can invert the multipath model and eliminate ghosts by means of CS. We develop effective methods for the reconstruction of stationary scenes, which employ a group sparse CS approach. Additionally, we separate the target and wall contributions to the image by a sparse reconstruction approach joining wall and target models, which allows suppression of the ghosts and increased signal-to-clutter ratio (SCR) at the target locations. Effectiveness of the proposed approach is demonstrated using both simulated and real data.

Journal ArticleDOI
TL;DR: A novel physical layer authentication scheme is proposed in this paper by exploiting the time-varying carrier frequency offset (CFO) associated with each pair of wireless communications devices to validate the feasibility of using CFO for authentication.
Abstract: A novel physical layer authentication scheme is proposed in this paper by exploiting the time-varying carrier frequency offset (CFO) associated with each pair of wireless communications devices. In realistic scenarios, radio frequency oscillators in each transmitter-and-receiver pair always present device-dependent biases to the nominal oscillating frequency. The combination of these biases and mobility-induced Doppler shift, characterized as a time-varying CFO, can be used as a radiometric signature for wireless device authentication. In the proposed authentication scheme, the variable CFO values at different communication times are first estimated. Kalman filtering is then employed to predict the current value by tracking the past CFO variation, which is modeled as an autoregressive random process. To achieve the proposed authentication, the current CFO estimate is compared with the Kalman predicted CFO using hypothesis testing to determine whether the signal has followed a consistent CFO pattern. An adaptive CFO variation threshold is derived for device discrimination according to the signal-to-noise ratio and the Kalman prediction error. In addition, a software-defined radio (SDR) based prototype platform has been developed to validate the feasibility of using CFO for authentication. Simulation results further confirm the effectiveness of the proposed scheme in multipath fading channels.

Journal ArticleDOI
TL;DR: A new distance mitigation algorithm based on channel classification and Kalman filter to enhanced TOA performance in multipath and NLOS indoor extreme environment is presented, which could significantly reduce the ranging error caused by the extreme channel condition in indoor area.
Abstract: Time-of-arrival (TOA)-based indoor geolocation suffer from huge distance measurement error caused by multipath and nonline-of-sight (NLOS) conditions. In this paper, we presented a new distance mitigation algorithm based on channel classification and Kalman filter to enhanced TOA performance in multipath and NLOS indoor extreme environment. This algorithm could significantly reduce the ranging error caused by the extreme channel condition in indoor area. We compared the performance of our algorithm with the traditional TOA distance mitigation algorithms, such as Kalman filter, biased Kalman filter, binary hypothesis testing, and ANN, using a commercially available TOA-based geolocation system in typical indoor and underground environments. Results show the performance of our algorithm is much superior to the others.

Journal ArticleDOI
TL;DR: This paper considers the problem of interference control through the use of second-order statistics in massive MIMO multi-cell networks and characterizes the low-rankness of users' channel covariance matrices, as such a property can be exploited towards improved channel estimation as well as interference rejection via spatial filtering.
Abstract: This paper considers the problem of interference control through the use of second-order statistics in massive MIMO multi-cell networks. We consider both the cases of co-located massive arrays and large-scale distributed antenna settings. We are interested in characterizing the low-rankness of users' channel covariance matrices, as such a property can be exploited towards improved channel estimation (so-called pilot decontamination) as well as interference rejection via spatial filtering. In previous work, it was shown that massive MIMO channel covariance matrices exhibit a useful finite-rank property that can be modeled via the angular spread of multipath at a MIMO uniform linear array. This paper extends this result to more general settings including certain non-uniform arrays, and more surprisingly, to two dimensional distributed large-scale arrays. In particular our model exhibits the dependence of the signal subspace's richness on the scattering radius around the user terminal, through a closed-form expression. The applications of the low-rankness covariance property to channel estimation's denoising and low-complexity interference filtering are highlighted.

Proceedings ArticleDOI
10 Jun 2014
TL;DR: A novel scheduling algorithm for multipath transport called Delay Aware Packet Scheduling (DAPS) which aims to reduce the receiver's buffer blocking time considered as a main parameter to enhance the QoS in wireless environments is studied.
Abstract: The increasing heterogeneity and asymmetry in wireless network environments makes QoS guarantees in terms of delays and throughput a challenging task. In this paper, we study a novel scheduling algorithm for multipath transport called Delay Aware Packet Scheduling (DAPS) which aims to reduce the receiver's buffer blocking time considered as a main parameter to enhance the QoS in wireless environments. We develop an analytical model of maximum receiver's buffer blocking time and extend the DAPS algorithm considering implementation issues. Performance evaluations based on ns-2 simulations highlight the enhanced QoS that DAPS can provide. With reference to the classical multipath transport protocol CMT-SCTP, we observe a significant reductions of the receiver's buffer occupancy, down by 77%, and the application delay, down by 63%.

Book ChapterDOI
Daniel Freedman1, Yoni Smolin1, Eyal Krupka1, Ido Leichter1, Mirko Schmidt1 
06 Sep 2014
TL;DR: SRA allows for very general forms of multipath, including interference with three or more paths, diffuse multipath resulting from Lambertian surfaces, and combinations thereof, and removes this general multipath with robust techniques based on L 1 optimization.
Abstract: A major issue with Time of Flight sensors is the presence of multipath interference. We present Sparse Reflections Analysis (SRA), an algorithm for removing this interference which has two main advantages. First, it allows for very general forms of multipath, including interference with three or more paths, diffuse multipath resulting from Lambertian surfaces, and combinations thereof. SRA removes this general multipath with robust techniques based on L 1 optimization. Second, due to a novel dimension reduction, we are able to produce a very fast version of SRA, which is able to run at frame rate. Experimental results on both synthetic data with ground truth, as well as real images of challenging scenes, validate the approach.

Journal ArticleDOI
TL;DR: The potential of using dual-polarisation antenna technology for detecting and mitigating the reception of NLOS signals and severe multipath interference is explored and the point positioning results were dramatically improved by excluding the detected NLOS measurements.
Abstract: The reception of indirect signals, either in the form of non-line-of-sight (NLOS) reception or multipath interference, is a major cause of GNSS position errors in urban environments. We explore the potential of using dual-polarisation antenna technology for detecting and mitigating the reception of NLOS signals and severe multipath interference. The new technique computes the value of the carrier-power-to-noise-density (C/N 0) measurements from left-hand circular polarised outputs subtracted from the right-hand circular polarised C/N 0 counterpart. If this quality is negative, NLOS signal reception is assumed. If the C/N 0 difference is positive, but falls below a threshold based on its lower bound in an open-sky environment, severe multipath interference is assumed. Results from two experiments are presented. Open-field testing was first performed to characterise the antenna behaviour and determine a suitable multipath detection threshold. The techniques were then tested in a dense urban area. Using the new method, two signals in the urban data were identified as NLOS-only reception during the occupation period at one station, while the majority of the remaining signals present were subject to a mixture of NLOS reception and severe multipath interference. The point positioning results were dramatically improved by excluding the detected NLOS measurements. The new technique is suited to a wide range of static ground applications based on our results.

DOI
12 Sep 2014
TL;DR: In this article, the authors demonstrate that centimeter-accurate positioning is possible based on data sampled from a smartphone-quality Global Navigation Satellite System (GNSS) antenna and demonstrate that the antenna's poor multipath suppression and irregular gain pattern result in large time-correlated phase errors which significantly increase the time to integer ambiguity resolution.
Abstract: This paper demonstrates for the first time that centimeteraccurate positioning is possible based on data sampled from a smartphone-quality Global Navigation Satellite System (GNSS) antenna. Centimeter-accurate smartphone positioning will enable a host of new applications such as globally-registered fiduciary-marker-free augmented reality and location-based contextual advertising, both of which have been hampered by the several-meterlevel errors in traditional GNSS positioning. An empirical analysis of data collected from a smartphone-grade GNSS antenna reveals the antenna to be the primary impediment to fast and reliable resolution of the integer ambiguities which arise when solving for a centimeter-accurate carrierphase differential position. The antenna’s poor multipath suppression and irregular gain pattern result in large timecorrelated phase errors which significantly increase the time to integer ambiguity resolution as compared to even a low-quality stand-alone patch antenna. The time to integer resolution—and to a centimeter-accurate fix—is significantly reduced when more GNSS signals are tracked or when the smartphone experiences gentle wavelength-scale random motion.

Journal ArticleDOI
TL;DR: It was found that, even for environments devoid of multipath or specular reflections generated by the local surroundings, a noticeable resultant dominant component can still exist in body-centric channels where the user's body shadows the direct LOS signal path between the transmitter and the receiver.
Abstract: This paper presents a new statistical signal reception model for shadowed body-centric communications channels. In this model, the potential clustering of multipath components is considered alongside the presence of elective dominant signal components. As typically occurs in body-centric communications channels, the dominant or line-of-sight (LOS) components are shadowed by body matter situated in the path trajectory. This situation may be further exacerbated due to physiological and biomechanical movements of the body. In the proposed model, the resultant dominant component which is formed by the phasor addition of these leading contributions is assumed to follow a lognormal distribution. A wide range of measured and simulated shadowed body-centric channels considering on-body, off-body and body-to-body communications are used to validate the model. During the course of the validation experiments, it was found that, even for environments devoid of multipath or specular reflections generated by the local surroundings, a noticeable resultant dominant component can still exist in body-centric channels where the user's body shadows the direct LOS signal path between the transmitter and the receiver.

Posted Content
TL;DR: Sparse reflections analysis (SRA) as mentioned in this paper removes general forms of multipath interference with robust techniques based on $L_1$ optimization, including interference with three or more paths and diffuse multipath resulting from Lambertian surfaces.
Abstract: A major issue with Time of Flight sensors is the presence of multipath interference. We present Sparse Reflections Analysis (SRA), an algorithm for removing this interference which has two main advantages. First, it allows for very general forms of multipath, including interference with three or more paths, diffuse multipath resulting from Lambertian surfaces, and combinations thereof. SRA removes this general multipath with robust techniques based on $L_1$ optimization. Second, due to a novel dimension reduction, we are able to produce a very fast version of SRA, which is able to run at frame rate. Experimental results on both synthetic data with ground truth, as well as real images of challenging scenes, validate the approach.

Journal ArticleDOI
TL;DR: In this two-part contribution, a forward/inverse approach is offered for GPS-MR of snow depth and the unknown snow characteristics are parameterized, the observation/parameter sensitivity is illustrated, and the inversion performance is assessed.
Abstract: Snowpacks provide reservoirs of freshwater. The amount stored and how fast it is released by melting are vital information for both scientists and water supply managers. GPS multipath reflectometry (GPS-MR) is a new technique that can be used to measure snow depth. Signal-to-noise ratio data collected by GPS instruments exhibit peaks and troughs as coherent direct and reflected signals go in and out of phase. These interference fringes are used to retrieve the unknown land surface characteristics. In this two-part contribution, a forward/inverse approach is offered for GPS-MR of snow depth. Part I starts with the physically based forward model utilized to simulate the coupling of the surface and antenna responses. A statistically rigorous inverse model is presented and employed to retrieve parameter corrections responsible for observation residuals. The unknown snow characteristics are parameterized, the observation/parameter sensitivity is illustrated, the inversion performance is assessed in terms of its precision and its accuracy, and the dependence of model results on the satellite direction is quantified. The latter serves to indicate the sensing footprint of the reflection.

Journal ArticleDOI
TL;DR: This letter presents the improvement of a multipath-assisted tracking approach using information about the relevance of deterministic multipath components in an environment using information fed to a tracking filter as an observation noise model.
Abstract: In a radio propagation channel, deterministic reflections carry important position-related information. With the help of prior knowledge such as a floor plan, this information can be exploited for indoor localization. This letter presents the improvement of a multipath-assisted tracking approach using information about the relevance of deterministic multipath components in an environment. This information is fed to a tracking filter as an observation noise model. It is estimated from a few training signals between anchors and an agent at known positions. Tracking results are presented for measurements in a partial non-line-of-sight environment. At a bandwidth of 2 GHz, an accuracy of 4 cm can be achieved for over 90% of the positions if additional channel information is available. Otherwise, this accuracy is only possible for about 45% of the positions. The covariance of the estimation matches closely to the corresponding Cramer–Rao lower bound.

Journal ArticleDOI
TL;DR: Sensing with equal gain combining (SEGC), a novel cooperative spectrum sensing technique for cognitive radio networks, is proposed and the performance of SEGC against existing orthogonal reporting techniques such as time division multiple access (TDMA) always dominates that of TDMA in terms of secondary throughput.
Abstract: Sensing with equal gain combining (SEGC), a novel cooperative spectrum sensing technique for cognitive radio net- works, is proposed. Cognitive radios simultaneously transmit their sensing results to the fusion center (FC) over multipath fading reporting channels. The cognitive radios estimate the phases of the reporting channels and use those estimates for coherent combining of the sensing results at the FC. A global decision is made at the FC by comparing the received signal with a threshold. We obtain the global detection probabilities and secondary throughput exactly through a moment generating function approach. We verify our solution via system simulation and demonstrate that the Chernoff bound and central limit theory approximation are not tight. The cases of hard sensing and soft sensing are considered and we provide examples in which hard sensing is advantageous to soft sensing. We contrast the performance of SEGC with maximum ra- tio combining of the sensors' results and provide examples where the former is superior. Furthermore, we evaluate the performance of SEGC against existing orthogonal reporting techniques such as time division multiple access (TDMA). SEGC performance always dominates that of TDMA in terms of secondary throughput. We also study the impact of phase and synchronization errors and demonstrate the robustness of the SEGC technique against such imperfections.

Journal ArticleDOI
TL;DR: A distributed system for personal positioning based on inertial sensors that consists of an inertial measurement unit connected to a radio carried by a person and the server connected to another radio, which leads to long operation time as power consumption also remains very low.
Abstract: Accurate position information is nowadays very important in many applications. For instance, maintaining the situation awareness in command center in emergency operations is very crucial. Due to signal strength attenuation and multipath, Global Navigation Satellite Systems are not suitable for indoor navigation purposes. Radio network-based positioning techniques, such as wireless local area network, require local infrastructure that is often vulnerable in emergency situations. We propose here a distributed system for personal positioning based on inertial sensors. The system consists of an inertial measurement unit (IMU) connected to a radio carried by a person and the server connected to another radio. Step length and heading estimation is computed in the IMU and sent to the server. On the server side, the position is estimated using particle filter-based map matching. The benefit of the distributed architecture is that the computational capacity can be kept very low on the user side, which leads to long operation time as power consumption also remains very low.

Journal ArticleDOI
TL;DR: A theoretical framework for an analytical investigation of multipath characteristics of frequency diverse arrays (FDAs) and transmitted field expressions are formulated for an FDA over a perfectly conducting ground plane first in a general analytical form, and these expressions are later simplified under reasonable assumptions.
Abstract: This paper presents a theoretical framework for an analytical investigation of multipath characteristics of frequency diverse arrays (FDAs), a task which is attempted for the first time in the open literature. In particular, transmitted field expressions are formulated for an FDA over a perfectly conducting ground plane first in a general analytical form, and these expressions are later simplified under reasonable assumptions. Developed formulation is then applied to a uniform, linear, continuous-wave operated FDA for the particular case of linear frequency increments, and closed-form solutions are established. Time dependence of the FDA array factor is next eliminated by calculating the average power received by an isotropic antenna at a given observation point. Field and power derivations are repeated for a conventional phased array to establish a performance benchmark. Numerical simulations are conducted for special test cases to demonstrate the advantages of FDAs over conventional phased arrays in terms of multipath propagation.

Journal ArticleDOI
TL;DR: The performance of Cloud Txn broadcasting system is described, which is designed to withstand combined noise, co-channel interference and multipath distortion power levels higher than the desired signal power.
Abstract: Cloud transmission (Cloud Txn) is a flexible multilayer system that uses spectrum overlay technology to simultaneously deliver multiple program streams with different characteristics and robustness for different services (mobile TV, HDTV, and UHDTV) in one radio frequency channel. Cloud Txn is a multilayer transmission system like layered-division multiplexing. The transmitted signal is formed by superimposing a number of independent signals at desired power levels to form a multilayered signal. The signals of different layers can have different coding, bit rate, and robustness. The upper layer system parameters are chosen to provide very robust transmission that can be used for high-speed mobile broadcasting. The bit rate is traded for powerful coding and robustness so that the signal-to-noise ratio (SNR) threshold at the receiver is in the range of ${-}{2}$ to ${-}{\rm 3}~{\rm dB}$ . The top layer is designed to withstand combined noise, co-channel interference and multipath distortion power levels higher than the desired signal power. The lower-layer signal can be a DVB-T2 signal or another new system to deliver HDTV/UHDTV to fixed receivers. The system concept is open to technological advances that might come in the future: BICM/non uniform-QAM, rotated constellations, time frequency slicing or MIMO techniques can be implemented in the Cloud Txn lower (high data rate) layer. The system can have backward compatible future extensions, adding more lower layers for additional services without impact legacy services. This paper describes the performance of Cloud Txn broadcasting system.

Journal ArticleDOI
TL;DR: Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.
Abstract: Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.

01 Jan 2014
TL;DR: In this paper, a convergence analysis to obtain the optimal calculation parameters in an in-house 3D ray launching algorithm to model the radio wave propagation channel in complex indoor environments is presented.
Abstract: In this paper, a convergence analysis to obtain the optimal calculation parameters in an inhouse 3D ray launching algorithm to model the radio wave propagation channel in complex indoor environments is presented. Results show that these parameters lead to accurate estimations with reduced computational time. In addition, simulation results of an indoor complex scenario in terms of received power and power delay profile are presented, showing significant influence of multipath propagation in an indoor radio channel. The adequate election of simulation parameters given by convergence conditions, can aid in optimizing required computational time.

Proceedings ArticleDOI
13 May 2014
TL;DR: A situation where jitter can occur in an MPTCP data transfer even when underlying network paths are stable is explained and a new scheduling policy is proposed that mitigates jitter by transmitting packets out-of-order on different sub flows such that they arrive in-order at theMPTCP receiver.
Abstract: MPTCP exploits using a device's multiple interfaces to achieve higher end-to-end throughput and increased robustness during times of path failure We consider potential delay advantages that MPTCP can provide users of real-time applications (eg, online gaming) where higher throughput does not necessarily guarantee a higher quality experience We first explain a situation where jitter can occur in an MPTCP data transfer even when underlying network paths are stable We propose a new scheduling policy that mitigates jitter by transmitting packets out-of-order on different sub flows such that they arrive in-order at the MPTCP receiver