scispace - formally typeset
Search or ask a question

Showing papers on "Nucleolus published in 2001"


Journal ArticleDOI
TL;DR: It is proposed that aberrant rRNA processing and/or ribosome biogenesis may cause “nucleolar stress,” leading to cell cycle arrest in a p53-dependent manner and revealed a new role for the p53 pathway as a mediator of the signaling link between ribosomes biogenesis and the cell cycle.
Abstract: Proliferating cells can delay or block cell cycle transitions in response to a variety of extracellular regulatory signals as well as to perturbations in intracellular processes. Several types of stress, such as DNA damage, defects in replication and chromosome segregation, and accumulation of misfolded proteins in the endoplasmic reticulum are now known to elicit checkpoint responses that prevent progression through the cell cycle (16, 25, 69). These responses are often altered in neoplastic cells, suggesting that the regulatory mechanisms involved play important roles in tumor development (24). In a previous study, we applied a genetic selection procedure to search for sequences in a cDNA library that can cause reversible arrest of the cell cycle (45). One cDNA clone (Bop1Δ) that induced a particularly strong inhibition of DNA synthesis in NIH 3T3 fibroblasts encoded an amino-terminally truncated form of a novel WD40 repeat protein, named Bop1 (block of proliferation). Expression of Bop1Δ interfered with the functions of the endogenous Bop1 in a dominant manner, which likely accounted for the strong growth-inhibitory potential of this clone. Subsequent studies revealed that Bop1 was predominantly localized to the nucleolus and cofractionated with preribosomal particles (58). Bop1Δ exhibited a similar localization but lacked some of the critical functions of the wild-type protein, leading to a dominant negative phenotype. Expression of this mutant form of Bop1 in LAP3 cells completely blocked formation of the mature 28S and 5.8S rRNAs and resulted in reduced levels of 60S ribosome subunits in the cytoplasm, while synthesis of 18S rRNA and production of 40S subunits were unaffected (58). Analysis of pre-rRNA processing revealed that conversion of the 36S precursor to the 32S pre-rRNA was reduced and that the 32S precursor was not processed to the 28S and 12S/5.8S rRNAs but instead was degraded (58). Although these findings indicated the role of Bop1 in processing of the 28S and 5.8S rRNAs and 60S ribosome assembly, it remained unclear how expression of Bop1Δ might exert an antiproliferative effect. In this study, we show that the cell cycle arrest caused by Bop1Δ-mediated perturbation of Bop1 function exhibits features of a G1 checkpoint associated with upregulation of the Cdk inhibitors (CKIs) p21 and p27 and downregulation of the G1-specific Cdk2 and Cdk4 activities. Inactivation of p53 alleviated Bop1Δ-induced cell cycle arrest. These findings show, for the first time, a p53-dependent cross-talk between ribosome biogenesis and cell cycle progression. We propose a model in which p53 senses nucleolar stress as a result of rRNA processing errors and induces cell cycle arrest as a consequence.

357 citations


Journal ArticleDOI
TL;DR: It is suggested that the rapid exchange of nucleolar components between the nucleolus and nucleoplasm may represent a new level of regulation for rRNA synthesis.
Abstract: We examined the mobilities of nucleolar components that act at various steps of the ribosome biogenesis pathway. Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) analyses demonstrate that factors involved in rRNA transcription (upstream-binding factor [UBF]), processing (nucleolin, fibrillarin, and RNase MRP subunits, Rpp29), and ribosome assembly (B23) exchange rapidly between the nucleoplasm and nucleolus. In contrast, the mobilities of ribosomal subunit proteins (S5, L9) are much slower. Selective inhibition of RNA polymerase I transcription does not prevent the exchanges but influences the rates of exchange differentially for different nucleolar components. These findings suggest that the rapid exchange of nucleolar components between the nucleolus and nucleoplasm may represent a new level of regulation for rRNA synthesis. The different dynamic properties of proteins involved in different steps of ribosome biogenesis imply that the nucleolar association of these proteins is due to their specific functional roles rather than simply their specific nucleolar-targeting events.

308 citations


Journal ArticleDOI
18 May 2001-Cell
TL;DR: It is proposed that the dynamic interaction of Noc proteins is crucial for intranuclear movement of ribosomal precursor particles, and, thereby represent a prerequisite for proper maturation.

225 citations


Journal ArticleDOI
TL;DR: Nucleolar localization signals were identified in the domain III region of the N protein from all three coronavirus groups, and this suggested that transport of N protein to the nucleus might be an active process.
Abstract: The subcellular localization of transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) (group I and group II coronaviruses, respectively) nucleoproteins (N proteins) were examined by confocal microscopy. The proteins were shown to localize either to the cytoplasm alone or to the cytoplasm and a structure in the nucleus. This feature was confirmed to be the nucleolus by using specific antibodies to nucleolin, a major component of the nucleolus, and by confocal microscopy to image sections through a cell expressing N protein. These findings are consistent with our previous report for infectious bronchitis virus (group III coronavirus) (J. A. Hiscox et al., J. Virol. 75:506-512, 2001), indicating that nucleolar localization of the N protein is a common feature of the coronavirus family and is possibly of functional significance. Nucleolar localization signals were identified in the domain III region of the N protein from all three coronavirus groups, and this suggested that transport of N protein to the nucleus might be an active process. In addition, our results suggest that the N protein might function to disrupt cell division. Thus, we observed that approximately 30% of cells transfected with the N protein appeared to be undergoing cell division. The most likely explanation for this is that the N protein induced a cell cycle delay or arrest, most likely in the G(2)/M phase. In a fraction of transfected cells expressing coronavirus N proteins, we observed multinucleate cells and dividing cells with nucleoli (which are only present during interphase). These findings are consistent with the possible inhibition of cytokinesis in these cells.

214 citations


Journal ArticleDOI
TL;DR: It is proposed that the temporal order of PNB assembly and disassembly controls nucleolar delivery of these proteins, and that accumulation of processing complexes in the nucleolus is driven by pre-rRNA concentration.
Abstract: To understand how nuclear machineries are targeted to accurate locations during nuclear assembly, we investigated the pathway of the ribosomal RNA (rRNA) processing machinery towards ribosomal genes (nucleolar organizer regions [NORs]) at exit of mitosis. To follow in living cells two permanently transfected green fluorescence protein–tagged nucleolar proteins, fibrillarin and Nop52, from metaphase to G1, 4-D time-lapse microscopy was used. In early telophase, fibrillarin is concentrated simultaneously in prenucleolar bodies (PNBs) and NORs, whereas PNB-containing Nop52 forms later. These distinct PNBs assemble at the chromosome surface. Analysis of PNB movement does not reveal the migration of PNBs towards the nucleolus, but rather a directional flow between PNBs and between PNBs and the nucleolus, ensuring progressive delivery of proteins into nucleoli. This delivery appeared organized in morphologically distinct structures visible by electron microscopy, suggesting transfer of large complexes. We propose that the temporal order of PNB assembly and disassembly controls nucleolar delivery of these proteins, and that accumulation of processing complexes in the nucleolus is driven by pre-rRNA concentration. Initial nucleolar formation around competent NORs appears to be followed by regroupment of the NORs into a single nucleolus 1 h later to complete the nucleolar assembly. This demonstrates the formation of one functional domain by cooperative interactions between different chromosome territories.

172 citations


Journal ArticleDOI
TL;DR: FRET analyses indicate that PP1 isoforms are highly mobile in cells and can be dynamically (re)localized through direct interaction with targeting subunits, indicating that steady-state localization is based, at least in part, on relative affinities for various targeting sub units.
Abstract: Protein phosphatase 1 (PP1) is expressed in mammalian cells as three closely related isoforms, alpha, beta/delta and gamma1, which are encoded by separate genes. It has yet to be determined whether the separate isoforms behave in a similar fashion or play distinct roles in vivo. We report here on analyses by fluorescence microscopy of functional and fluorescently tagged PP1 isoforms in live cells. PP1alpha and PP1gamma fluorescent protein fusions show largely complimentary localization patterns, particularly within the nucleus where tagged PP1gamma accumulates in the nucleolus, whereas tagged PP1alpha is primarily found in the nucleoplasm. Overexpression of NIPP1 (nuclear inhibitor of PP1), a PP1 targeting subunit that accumulates at interchromatin granule clusters in the nucleoplasm, results in a retargeting of both isoforms to these structures, indicating that steady-state localization is based, at least in part, on relative affinities for various targeting subunits. Photobleaching analyses show that PP1gamma is rapidly exchanging between the nucleolar, nucleoplasmic and cytoplasmic compartments. Fluorescence resonance energy transfer (FRET) analyses indicate that the direct interaction of the two proteins predominantly occurs at or near interchromatin granule clusters. These data indicate that PP1 isoforms are highly mobile in cells and can be dynamically (re)localized through direct interaction with targeting subunits.

160 citations


Journal ArticleDOI
TL;DR: The accumulation of POD-associated proteins and proteasomes in the nucleoli of MG132-treated cells indicates that these proteins may target theucleoli under normal conditions and that the nucleolus may have a function in the regulation of proteasomal protein degradation.
Abstract: Several recent findings have indicated that the promyelocytic leukemia gene product (PML) oncogenic domains (PODs) are involved in proteasome-mediated degradation of ubiquitinated proteins We wanted to examine the intracellular distribution of PML protein in the presence of a proteasome inhibitor We used high-resolution microscopy to study the distribution of PML protein and other POD-associated proteins along with the proteasomes themselves under normal conditions and in cells treated with the proteasome inhibitor, MG132 Inhibition of the proteasomes in MCF-7, HeLa, and IB-4 cell lines resulted in a radical redistribution of the POD-associated proteins PML, Sp100, and SUMO-1 After 6–10 h of MG132 treatment, PML, Sp100, and SUMO-1 were no longer detectable in the PODs and accumulated mainly in the nucleolus Moreover, MG132 treatment changed the cellular distribution of the proteasomes Interestingly, this included the accumulation in euchromatin areas of the nucleus and within the nucleoli Several non-POD-associated proteins did not change their cellular distribution under the same conditions The accumulation of POD-associated proteins and proteasomes in the nucleoli of MG132-treated cells indicates that these proteins may target the nucleoli under normal conditions and that the nucleolus may have a function in the regulation of proteasomal protein degradation

143 citations


Journal ArticleDOI
TL;DR: It is reported that in yeast, overexpression of a box C/D reporter leads to a block in the localization pathway with snoRNA accumulation in a specific sub‐nucleolar structure, the nucleolar body (NB), and snoRNP assembly occurs either in the nucleoplasm, or during transit of snoRNAs through the NB, followed by routing of the complete sno RNP to functional sites of ribosome synthesis.
Abstract: Nucleolar localization of box C/D small nucleolar (sno) RNAs requires the box C/D motif and, in vertebrates, involves transit through Cajal bodies (CB). We report that in yeast, overexpression of a box C/D reporter leads to a block in the localization pathway with snoRNA accumulation in a specific sub-nucleolar structure, the nucleolar body (NB). The human survival of motor neuron protein (SMN), a marker of gems/CB, specifically localizes to the NB when expressed in yeast, supporting similarities between these structures. Box C/D snoRNA accumulation in the NB was decreased by mutation of Srp40 and increased by mutation of Nsr1p, two related nucleolar proteins that are homologous to human Nopp140 and nucleolin, respectively. Box C/D snoRNAs also failed to accumulate in the NB, and became delocalized to the nucleoplasm, upon depletion of any of the core snoRNP proteins, Nop1p/fibrillarin, Snu13p, Nop56p and Nop5p/Nop58p. We conclude that snoRNP assembly occurs either in the nucleoplasm, or during transit of snoRNAs through the NB, followed by routing of the complete snoRNP to functional sites of ribosome synthesis.

141 citations


Journal ArticleDOI
03 May 2001-Oncogene
TL;DR: Comparing the properties of wild type p53 and sumoylation-deficient p53 mutant, K386R, indicates that SUMO-1 modification of p53 at lysine 386 may not be essential for p53's cellular localization, transcriptional activation, or growth regulation.
Abstract: p53 tumor suppressor is a subject of several post-translational modifications, including phosphorylation, ubiquitination and acetylation, which regulate p53 function. A new covalent modification of p53 at lysine 386 by SUMO-1 was recently identified. To elucidate the function of sumoylated p53, we compared the properties of wild type p53 and sumoylation-deficient p53 mutant, K386R. No differences were found between wild type p53 and K386R mutant of p53 in transactivation or growth suppression assays. Moreover, overexpression of SUMO-1 has no effect on p53-regulated transcription. Biochemical fractionation showed that sumoylated p53 is localized in the nucleus and is tightly bound to chromatin structures. p53 and SUMO-1 co-localized in PML nuclear bodies in 293 cells and the nucleoli in MCF7 and HT1080 cells. However, sumoylation-deficient p53 mutant showed a similar pattern of intranuclear localization, suggesting that SUMO-1 does not target p53 to subnuclear structures. These data indicate that SUMO-1 modification of p53 at lysine 386 may not be essential for p53's cellular localization, transcriptional activation, or growth regulation.

140 citations


Journal ArticleDOI
TL;DR: The nuclear location of individual human acrocentric chromosomes, and their associated NORs, in mouse> human cell hybrids are determined and incorporation of silent NORs into mature nucleoli raises interesting issues concerning the maintenance of the activity status of individual NORs.
Abstract: Human ribosomal gene repeats are distributed among five nucleolar organizer regions (NORs) on the p arms of acrocentric chromosomes. On exit from mitosis, nucleoli form around individual active NORs. As cells progress through the cycle, these mini-nucleoli fuse to form large nucleoli incorporating multiple NORs. It is generally assumed that nucleolar incorporation of individual NORs is dependent on ribosomal gene transcription. To test this assumption, we determined the nuclear location of individual human acrocentric chromosomes, and their associated NORs, in mouse> human cell hybrids. Human ribosomal genes are transcriptionally silent in this context. Combined immunofluorescence and in situ hybridization (immuno-FISH) on three-dimensional preserved nuclei showed that human acrocentric chromosomes associate with hybrid cell nucleoli. Analysis of purified nucleoli demonstrated that human and mouse NORs are equally likely to be within a hybrid cell nucleolus. This is supported further by the observation that murine upstream binding factor can associate with human NORs. Incorporation of silent NORs into mature nucleoli raises interesting issues concerning the maintenance of the activity status of individual NORs.

140 citations


Journal ArticleDOI
01 Sep 2001-RNA
TL;DR: Bms1p is a GTP-binding protein, the first found to function in ribosome assembly or rRNA processing, and is required for assembly of a transport- or maturation-competent particle or is specifically required for transport of 43S pre-ribosomal particles, but not 60S ribosomal precursors, from the nucleus to the cytosol.
Abstract: Bms1p and Tsr1p define a novel family of proteins required for synthesis of 40S ribosomal subunits in Saccharomyces cerevisiae. Both are essential and localize to the nucleolus. Tsr1p shares two extended regions of similarity with Bms1p, but the two proteins function at different steps in 40S ribosome maturation. Inactivation of Bms1p blocks at an early step, leading to disappearance of 20S and 18S rRNA precursors. Also, slight accumulation of an aberrant 23S product and significant 35S accumulation are observed, indicating that pre-rRNA processing at sites A0 ,A 1, and A2 is inhibited. In contrast, depletion of Tsr1p results in accumulation of 20S rRNA. Because processing of 20S to 18S rRNA occurs in the cytoplasm, this suggests that Tsr1p is required for assembly of a transport- or maturationcompetent particle or is specifically required for transport of 43S pre-ribosomal particles, but not 60S ribosome precursors, from the nucleus to the cytosol. Finally, Bms1p is a GTP-binding protein, the first found to function in ribosome assembly or rRNA processing.

Journal ArticleDOI
TL;DR: It is proposed that assembly of the SRP requires import of all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with scR1, which can be targeted to the nuclear pores and exported to the cytoplasm in an Xpo1p-dependent way.
Abstract: The signal recognition particle (SRP) targets nascent secretory proteins to the ER, but how and where the SRP assembles is largely unknown. Here we analyze the biogenesis of yeast SRP, which consists of an RNA molecule (scR1) and six proteins, by localizing all its components. Although scR1 is cytoplasmic in wild-type cells, nuclear localization was observed in cells lacking any one of the four SRP “core proteins” Srp14p, Srp21p, Srp68p, or Srp72p. Consistently, a major nucleolar pool was detected for these proteins. Sec65p, on the other hand, was found in both the nucleoplasm and the nucleolus, whereas Srp54p was predominantly cytoplasmic. Import of the core proteins into the nucleolus requires the ribosomal protein import receptors Pse1p and Kap123p/Yrb4p, which might, thus, constitute a nucleolar import pathway. Nuclear export of scR1 is mediated by the nuclear export signal receptor Xpo1p, is distinct from mRNA transport, and requires, as evidenced by the nucleolar accumulation of scR1 in a dis3/rrp44 exosome component mutant, an intact scR1 3′ end. A subset of nucleoporins, including Nsp1p and Nup159p (Rat7p), are also necessary for efficient translocation of scR1 from the nucleus to the cytoplasm. We propose that assembly of the SRP requires import of all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with scR1. This particle can then be targeted to the nuclear pores and is subsequently exported to the cytoplasm in an Xpo1p-dependent way.

Journal ArticleDOI
TL;DR: Two new functions of Net1 are reported, one of which directly binds Pol I and stimulates rRNA synthesis both in vitro and in vivo, and the other modulates nucleolar structure by regulating rDNA morphology and proper localization of multiple nucleolar antigens, including Pol I.

Journal ArticleDOI
TL;DR: This is the first time an adenovirus protein has been shown to have a direct effect on nucleolar antigens in isolation from viral infection and the first protein demonstrated to be capable of redirecting nucleolin and B23 to the cytoplasm.
Abstract: Adenovirus infection inhibits synthesis and processing of rRNA and redistributes nucleolar antigens. Adenovirus protein V associates with nucleoli in infected cells. This study delineates regions of protein V independently capable of nucleolar targeting. Also, evidence is presented that protein V has the unique property of relocating nucleolin and B23 to the cytoplasm when transiently expressed on its own in uninfected cells. Point mutation analysis indicates a role for the C terminus of protein V in the redirection of nucleolin and B23 to the cytoplasm. This is the first time an adenovirus protein has been shown to have a direct effect on nucleolar antigens in isolation from viral infection. Moreover, adenovirus protein V is the first protein demonstrated to be capable of redirecting nucleolin and B23 to the cytoplasm.

Journal ArticleDOI
TL;DR: A visual gene trap screen is used to identify more than 100 proteins, many of which are normal, located within compartments of the mouse nucleus, and finds that sequence motifs are often shared amongst proteins co-localized within the same sub-nuclear compartment, suggesting that they may be able to predict sub- nuclear localization for proteins in databases based on their sequence.
Abstract: Many nuclear components participating in related pathways appear concentrated in specific areas of the mammalian nucleus. The importance of this organization is attested to by the dysfunction that correlates with mis-localization of nuclear proteins in human disease and cancer. Determining the sub-nuclear localization of proteins is therefore important for understanding genome regulation and function, and it also provides clues to function for novel proteins. However, the complexity of proteins in the mammalian nucleus is too large to tackle this on a protein by protein basis. Large-scale approaches to determining protein function and sub-cellular localization are required. We have used a visual gene trap screen to identify more than 100 proteins, many of which are normal, located within compartments of the mouse nucleus. The most common discrete localizations detected are at the nucleolus and the splicing speckles and on chromosomes. Proteins at the nuclear periphery, or in other nuclear foci, have also been identified. Several of the proteins have been implicated in human disease or cancer, e.g. ATRX, HMGI-C, NBS1 and EWS, and the gene-trapped proteins provide a route into further understanding their function. We find that sequence motifs are often shared amongst proteins co-localized within the same sub-nuclear compartment. Conversely, some generally abundant motifs are lacking from the proteins concentrated in specific areas of the nucleus. This suggests that we may be able to predict sub-nuclear localization for proteins in databases based on their sequence.

Journal ArticleDOI
TL;DR: Most of the described regulations on ribosome biogenesis in the nucleolus are summarized and may represent only a small fraction of a larger picture.

Journal ArticleDOI
TL;DR: These findings indicate that the fusion behavior of nucleoli, the formation of CBs and their relationships with the nucleolus, as well as the compartmentalization of the pre‐mRNA splicing machinery, is related to cell body size in the trigeminal ganglion neurons.
Abstract: Trigeminal ganglion neurons comprise three main cell body-size types. This cell size heterogeneity provides an excellent neuronal model to study the cell size-dependent organization and dynamics of the nucleoli, Cajal (coiled) bodies (CBs), and nuclear speckles of pre-mRNA splicing factors, nuclear structures that play a key role in the normal neuronal physiology. We have analyzed the number of nucleoli and CBs and the structural and molecular organization of CBs and nuclear speckles in the three neuronal types by using immunofluorescence with antibodies that recognize nucleoli (fibrillarin), CBs (coilin), and nuclear speckles (snRNPs), confocal microscopy, and electron microscopy. Whereas the mean number of nucleoli per neuron decreases as a function of cell size, the number of CBs per cell significantly increases in large neurons in comparison with the small ones. In addition, large neurons have a higher proportion of CBs associated with the nucleolus. In all neuronal types, CBs concentrate coilin, fibrillarin, snRNPs, and the survival motor neuron protein (SMN). Immunostaining for snRNPs shows small speckle domains and extensive areas of diffuse nucleoplasmic signal in large neurons, in contrast with the large nuclear speckles found in small neurons. Furthermore, flow cytometric analysis shows that all neurons are in the range of diploid cells. These findings indicate that the fusion behavior of nucleoli, the formation of CBs and their relationships with the nucleolus, as well as the compartmentalization of the pre-mRNA splicing machinery, is related to cell body size in the trigeminal ganglion neurons. Because transcriptional activity is a basic determinant mechanism of cell size in diploid cells, we suggest that our findings reflect a distinct transcription-dependent organization of the nucleolus and splicing machinery in the three cell types of trigeminal ganglion neurons. J. Comp. Neurol. 430:250–263, 2001. © 2001 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is shown that UV induces ING1 to translocate to the nucleolus and that this translocation may facilitate apoptosis, which is shown to facilitate cell cycle progression and affect apoptosis.
Abstract: The ING1 candidate tumor suppressor is downregulated in a variety of primary tumors and established cancer cell lines. Blocking its expression experimentally promotes unregulated growth in vitro and in vivo, using cell and animal models. Alternative splicing products encode proteins that localize to the nucleus, inhibit cell cycle progression and affect apoptosis in different model systems. Here we show that ING1 proteins translocate to the nucleolus 12-48 h after UV-induced DNA damage. When a small 50 amino acid portion of ING1 was fused to green fluorescent protein, the fusion protein was efficiently targeted to the nucleolus, indicating that ING1 possesses an intrinsic nucleolar targeting sequence (NTS). We mapped this activity to two distinct 4 amino acid regions, which individually direct fused heterologous proteins to the nucleolus. Overexpression of ING1 induced apoptosis of primary fibroblasts in the presence and absence of UV exposure. In contrast, NTS mutants of ING1 that were not targeted to the nucleolus did not efficiently induce apoptosis when overexpressed and instead protected cells from UV-induced apoptosis. Taken together, these results indicate that UV induces ING1 to translocate to the nucleolus and that this translocation may facilitate apoptosis.

Journal ArticleDOI
01 Sep 2001-RNA
TL;DR: The results indicate that Bms1p may act as a molecular switch during maturation of the 40S ribosomal subunit in the nucleolus, and it is demonstrated that mutations of amino acids implicated in GTP/GDP binding affect BMS1p activity in vivo.
Abstract: Maturation of 18S rRNA and biogenesis of the 40S ribosomes in yeast requires a large number of trans-acting factors, including the U3 small nucleolar ribonucleoprotein (U3 snoRNP), and the recently characterized cyclase-like protein Rcl1p. U3 snoRNP is a key particle orchestrating early 35S rRNA cleavage events. A unique property of Rcl1p is that it specifically associates with U3 snoRNP, but this association appears to occur only at the level of nascent ribosomes and not with the U3 monoparticle. Here we report the characterization of Bms1p, a protein that associates with Rcl1p in multiple structures, including a specific complex sedimenting at around 10S. Like Rcl1p, Bms1p is an essential, evolutionarily conserved, nucleolar protein, and its depletion interferes with processing of the 35S pre-rRNA at sites A0, A1, and A2, and the formation of 40S subunits. The N-terminal domain of Bms1p has structural features found in regulatory GTPases and we demonstrate that mutations of amino acids implicated in GTP/GDP binding affect Bms1p activity in vivo. The results indicate that Bms1p may act as a molecular switch during maturation of the 40S ribosomal subunit in the nucleolus.

Journal ArticleDOI
TL;DR: A large decrease in the transcription rates by RNA polymerases I and II is shown when proliferative forms of Trypanosoma cruzi transform into non-proliferative and infective forms (trypomastigotes) and these changes in transcription occur in parallel with modifications in the nuclear structure.

Journal ArticleDOI
TL;DR: The data show that Hsp70 not only is involved in holding and refolding of heat-unfolded nuclear proteins but also drives them to the nucleolus during stress, thereby allowing their refolding at the permissive conditions and preventing indirect damage to other nuclear components.
Abstract: Molecular chaperones are involved in the protection of cells against protein damage through their ability to hold, disaggregate, and refold damaged proteins or their ability to facilitate degradation of damaged proteins. Little is known about how these processes are spatially coordinated in cells. Using a heat-sensitive nuclear model protein luciferase fused to the traceable, heat-stable enhanced green fluorescent protein (N-luc-EGFP), we now show that heat inactivation and insolubilization of luciferase were associated with accumulation of N-luc-EGFP at multiple foci throughout the nucleus. Coexpression of Hsp70, one of the major mammalian chaperones, reduced the formation of these small foci during heat shock. Instead, the heat-unfolded N-luc-EGFP accumulated in large, insoluble foci. Immunofluorescence analysis revealed that these foci colocalized with the nucleoli. Time-lapse analysis demonstrated that protein translocation to the nucleolus, in contrast to the accumulation at small foci, was fully reversible upon return to the normal growth temperature. This reversibility was associated with an increase in the level of active and soluble luciferase. Expression of a carboxyl-terminal deletion mutant of Hsp70(1-543), which lacked chaperone activity, had no effect on the localization of N-luc-EGFP, which suggests that the Hsp70 chaperone activity is required for the translocation events. Our data show that Hsp70 not only is involved in holding and refolding of heat-unfolded nuclear proteins but also drives them to the nucleolus during stress. This might prevent random aggregation of thermolabile proteins within the nucleus, thereby allowing their refolding at the permissive conditions and preventing indirect damage to other nuclear components.

Journal ArticleDOI
TL;DR: Analysis of additional chimeric U2 RNAs reveals a correlation between internal modification and nucleolar localization, and suggests that U2 internal modification occurs within the nucleolus.
Abstract: U2 small nuclear (sn)RNA contains a large number of posttranscriptionally modified nucleotides, including a 5′ trimethylated guanosine cap, 13 pseudouridines, and 10 2′-O-methylated residues. Using Xenopus oocytes, we demonstrated previously that at least some of these modified nucleotides are essential for biogenesis of a functional snRNP. Here we address the subcellular site of U2 internal modification. Upon injection into the cytoplasm of oocytes, G-capped U2 that is transported to the nucleus becomes modified, whereas A-capped U2 that remains in the cytoplasm is not modified. Furthermore, by injecting U2 RNA into isolated nuclei or enucleated oocytes, we observe that U2 internal modifications occur exclusively in the nucleus. Analysis of the intranuclear localization of fluorescently labeled RNAs shows that injected wild-type U2 becomes localized to nucleoli and Cajal bodies. Both internal modification and nucleolar localization of U2 are dependent on the Sm binding site. An Sm-mutant U2 is targeted only to Cajal bodies. The Sm binding site can be replaced by a nucleolar localization signal derived from small nucleolar RNAs (the box C/D motif), resulting in rescue of internal modification as well as nucleolar localization. Analysis of additional chimeric U2 RNAs reveals a correlation between internal modification and nucleolar localization. Together, our results suggest that U2 internal modification occurs within the nucleolus.

Journal ArticleDOI
TL;DR: The effects of different concentrations (10-5 - 10-2 M) of copper sulfate on root growth, cell division and nucleoli in root tip cells of Zea mays L were investigated as discussed by the authors.
Abstract: The effects of different concentrations (10-5 - 10-2 M) of copper sulfate on root growth, cell division and nucleoli in root tip cells of Zea mays L. were investigated. 10-5 M Cu stimulated root growth, but at higher concentrations (10-4 - 10-2 M) inhibited it. Cu had toxic effects on chromosomal morphology: c-mitosis, anaphase bridges, and chromosome stickiness were induced. Some nuclei had irregular shape and particles extruded from nucleoli to nuclei and finally from the nuclei into the cytoplasm.

Journal ArticleDOI
TL;DR: Examination of the ploidy of embryonic cells using fluorescence in situ hybridization has revealed that the production of bovine embryos in vitro is associated with increased chromosome aberrations in the embryos.
Abstract: This review focuses on the key features of development of the bovine oocyte and embryo, with comparisons of the developmental characteristics of embryos produced in vivo and in vitro. The oocyte is transcriptionally quiescent in the primordial and primary follicle. In the secondary follicle transcription is initiated in the oocyte and a ribosome-synthesizing nucleolus is established in this cell. Transcription and nucleolar activity are enhanced in the tertiary follicle during oocyte growth. When the oocyte reaches approximately 110 microm in diameter, corresponding to a follicle of about 3 mm in diameter, transcription ceases and the nucleolus is inactivated, forming a dense spherical remnant. During the final phase of follicular dominance this remnant becomes vacuolated and, in conjunction with resumption of meiosis, it disperses. The rRNA genes are apparently re-activated during the four-cell stage, that is, the third cell cycle after fertilization, but a nucleolus is not formed. During the subsequent cell cycle, that is, during the eight-cell stage, ribosome-synthesizing nucleoli are again established. Bovine embryos produced in vitro apparently display the same pattern of nucleolus development as that in embryos developed in vivo. Examination of the ploidy of embryonic cells using fluorescence in situ hybridization has revealed that the production of bovine embryos in vitro is associated with increased chromosome aberrations in the embryos. Blastocysts produced in vitro display a significantly higher rate of mixoploidy, that is, when the embryo consists of both normal diploid and abnormal polyploid cells, than that in embryos developed in vivo. The rate of mixoploidy among embryos produced in vitro increases with increasing developmental stage. Moreover, after fertilization in vitro, initially there is a high rate of 'true' polyploidy, that is, when all cells of the embryos are polyploid. However, the polyploid embryos are eliminated before they cleave beyond the eight-cell stage, the stage at which major activation of the embryonic genome occurs in cattle.

Journal ArticleDOI
TL;DR: It is proposed that a nuclear AAA ATPase is required for restructuring nucleoplasmic 60S pre‐ribosomal particles to make them competent for nuclear export.
Abstract: Ribosomal precursor particles are assembled in the nucleolus before export into the cytoplasm. Using a visual assay for nuclear accumulation of 60S subunits, we have isolated several conditional-lethal strains with defects in ribosomal export (rix mutants). Here we report the characterization of a mutation in an essential gene, RIX7, which encodes a novel member of the AAA ATPase superfamily. The rix7-1 temperature-sensitive allele carries a point mutation that causes defects in pre-rRNA processing, biogenesis of 60S ribosomal subunits, and their subsequent export into the cytoplasm. Rix7p, which associates with 60S ribosomal precursor particles, localizes throughout the nucleus in exponentially growing cells, but concentrates in the nucleolus in stationary phase cells. When cells resume growth upon shift to fresh medium, Rix7p-green fluorescent protein exhibits a transient perinuclear location. We propose that a nuclear AAA ATPase is required for restructuring nucleoplasmic 60S pre-ribosomal particles to make them competent for nuclear export.

Journal ArticleDOI
TL;DR: The immunolocalization data support previous electron microscopical data, suggesting that TPR forms filaments that extend from the NPC to the nucleolus, and the possible implications of the association of Nup98 with this intranuclear TPR network for an intran nuclear phase of transport are discussed.
Abstract: The Nup98 gene codes for several alternatively spliced protein precursors. Two in vitro translated and autoproteolytically cleaved precursors yielded heterodimers of Nup98-6kDa peptide and Nup98-Nup96. TPR (translocated promoter region) is a protein that forms filamentous structures extending from nuclear pore complexes (NPCs) to intranuclear sites. We found that in vitro translated TPR bound to in vitro translated Nup98 and, via Nup98, to Nup96. Double-immunofluorescence microscopy with antibodies to TPR and Nup98 showed colocalization. In confocal sections the nucleolus itself was only weakly stained but there was intensive perinucleolar staining. Striking spike-like structures emanated from this perinucleolar ring and attenuated into thinner structures as they extended to the nuclear periphery. This characteristic staining pattern of the TPR network was considerably enhanced when a myc-tagged pyruvate kinase-6kDa fusion protein was overexpressed in HeLa cells. Double-immunoelectron microscopy of these cells using anti-myc and anti-TPR antibodies and secondary gold-coupled antibodies yielded row-like arrangements of gold particles. Taken together, the immunolocalization data support previous electron microscopical data, suggesting that TPR forms filaments that extend from the NPC to the nucleolus. We discuss the possible implications of the association of Nup98 with this intranuclear TPR network for an intranuclear phase of transport.

Journal ArticleDOI
TL;DR: The results suggest that the p53 proteins accumulating in the nucleus following UV-irradiation or blockage of transcription are freely soluble and, thus, should be able to roam the nucleus to ensure high occupancy of p53 binding sites.
Abstract: The tumor suppressor p53 is a nucleocytoplasmic shuttling protein that accumulates in the nucleus of cells exposed to various cellular stresses. One important role of nuclear p53 is to mobilize a stress response by transactivating target genes such as the p21(Waf1) gene. In this study, we investigated more closely the localization of p53 in cells following various stresses. Immunocytochemistry of fixed human fibroblasts treated with either UV light, the kinase and transcription inhibitor DRB or the proteasome inhibitor MG132 revealed abundant p53 localized to the nucleus. When cells treated with UV or DRB were permeabilized prior to fixation to allow soluble proteins to diffuse, the nuclear p53 signal was abolished. However, in cells treated with MG132, residual p53 localized to distinct large foci. Furthermore, nucleolin co-localized with p53 to these foci, suggesting that these foci were nucleolar structures. Interestingly, the MDM2 protein was found to co-localize with p53 to nucleolar structures following proteasome inhibition. Our results suggest that the p53 proteins accumulating in the nucleus following UV-irradiation or blockage of transcription are freely soluble and, thus, should be able to roam the nucleus to ensure high occupancy of p53 binding sites. However, inhibition of proteasome activity may be a unique stress in that it leads to the sequestering of p53 proteins to the nucleolus, thereby blunting the p53-mediated transactivation of target genes.

Journal ArticleDOI
TL;DR: The hypothesis that the nucleolus is a preferred target for caspase-3-dependent proteolysis in cisplatin-treated HeLa cells is substantiated by demonstrating remarkable segregation of nucleolar argyrophilic proteins, nucleolar RNA and a simultaneous activation of the cascade of caspases markedly preceded the TUNEL positivity.
Abstract: We studied morphological changes of the nucleoli in HeLa cells treated with cisplatin and compared them with induction of markers of programmed cell death and TUNEL staining. We used different light microscopic nucleolar staining methods allowing us to visualize not only nucleolar proteins but also nucleolar RNA. Our results show predominantly compact, centrally localized nucleoli in intact control HeLa cells. In cisplatin-treated HeLa cells, we found an early onset of nucleolar segregation of proteins detected by argyrophilic nucleolar organizer regions and anti-nucleolar monoclonal antibody as well as an increased immunoreactivity for activated caspase-3 after 6 hours. Staining with Toluidine Blue and Methyl-green Pyronine revealed segregated nucleoli 12 hours after the treatment with cisplatin. TUNEL positivity in cisplatin-treated HeLa cells was accompanied by the aggregation of the argyrophilic proteins in the central portion of nucleus, disappearance of nucleolar RNA and shrinkage of the nucleus after 24 hours. Monitoring of the biochemical changes by immunoblotting revealed that activation of distinct caspases and degradation of their downstream protein substrates is executed in two phases. During an early apoptotic stage beginning 4.5 hours post treatment an activation of caspase-9 and caspase-3 was observed. This was accompanied by proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). The caspase-9 activation seems to be mediated by recruitment by the activating factor Apaf-1 because the increased accumulation of Apaf-1 and cytochrome C in cytosol preceded the generation of mature caspase-9 form. A second phase of apoptosis occurring between 10 and 15 hours post treatment was characterized by degradation of other nucleolar and nuclear proteins such as nuclear lamins, topoisomerase I and B23. In conclusion, remarkable segregation of nucleolar argyrophilic proteins, nucleolar RNA and a simultaneous activation of the cascade of caspases markedly preceded the TUNEL positivity in cisplatin-treated HeLa cells thereby substantiating the hypothesis that the nucleolus is a preferred target for caspase-3-dependent proteolysis in cisplatin-treated HeLa cells.

Journal ArticleDOI
TL;DR: Results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.
Abstract: Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH2 terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.

Journal ArticleDOI
TL;DR: In isolation of NCL‐binding protein complex and its proteomic characterization with the use of an analytical method based on matrix‐assisted laser desorption/ionization‐time of flight analysis coupled with searching peptide mass databases suggest that the isolated NCL-RNP complex is a preribosomal particle present in the nucleolus of 293 cells.
Abstract: Nucleolin (NCL) is one of the most abundant nucleolar proteins of exponentially growing eukaryotic cells. It is known to interact only transiently with rRNA and preribosomal particles and not to be detectable in mature cytoplasmic ribosomes, and is believed to function as multi-protein complexes during ribosome biogenesis and maturation. However, those multiprotein complexes remain only partially characterized due to the difficulty of conventional protein analysis methods. Here we report isolation of NCL-binding protein complex and its proteomic characterization with the use of an analytical method based on matrix-assisted laser desorption/ionization-time of flight analysis coupled with searching peptide mass databases. The NCL-binding protein complex was isolated by immunoprecipitation with anti-Flag antibody from human kidney 293 cells that were transfected with the Flag-tagged NCL gene, and showed RNA integrity for holding their protein constituents. Interaction between NCL and its binding complex was disrupted by an RNA oligonucleotide with a NCL recognition element, indicating that NCL binds to the ribonucleoprotein (RNP) complex mainly through the sequence specific protein-RNA interaction. We confirmed that an RNA-binding domain of NCL alone was sufficient to hold the entire NCL-binding RNP complex, indicating the strict binding specificity of NCL to the isolated RNP complex in 293 cells. We identified forty ribosomal proteins from both the large and small subunits, and twenty nonribosomal proteins. These results together suggest that the isolated NCL-binding RNP complex is a preribosomal particle present in the nucleolus of 293 cells.