scispace - formally typeset
Search or ask a question

Showing papers on "Ocean current published in 2006"


Journal ArticleDOI
TL;DR: In this article, the authors describe the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere-ocean general circulation model (AOGCM).
Abstract: This paper describes the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere–ocean general circulation model (AOGCM). Results are presented from a version of the coupled model that served as a prototype for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations. The model does not require flux adjustment to maintain a stable climate. A control simulation with present-day greenhouse gases is analyzed, and the simulation of key oceanic features, such as sea surface temperatures (SSTs), large-scale circulation, meridional heat and freshwater transports, and sea ice are compared with observations. A parameterization that accounts for the effect of ocean currents on surface wind stress is implemented in the model. The largest impact of this parameterization is in the tropical Pacific, where the mean state is significantly improved: the strength of the trade winds and the associated...

888 citations


Journal ArticleDOI
TL;DR: In this article, the authors compare the performance of different models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) to document and improve understanding of the causes of wide variations in the modeled THC response.
Abstract: The Atlantic thermohaline circulation (THC) is an important part of the earth’s climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere–ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-S v( 1 Sv 10 6 m 3 s 1 ) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate some weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.

856 citations


Journal ArticleDOI
TL;DR: In this article, an idealized general circulation model is constructed of the ocean's deep circulation and CO2 system that explains some of the more puzzling features of glacial-interglacial CO2 cycles, including the tight correlation between atmospheric CO2 and Antarctic temperatures, the lead of Antarctic temperatures over CO2 at terminations, and the shift of ocean's δ13C minimum from the North Pacific to the Atlantic sector of the Southern Ocean.
Abstract: [1] An idealized general circulation model is constructed of the ocean's deep circulation and CO2 system that explains some of the more puzzling features of glacial-interglacial CO2 cycles, including the tight correlation between atmospheric CO2 and Antarctic temperatures, the lead of Antarctic temperatures over CO2 at terminations, and the shift of the ocean's δ13C minimum from the North Pacific to the Atlantic sector of the Southern Ocean. These changes occur in the model during transitions between on and off states of the southern overturning circulation. We hypothesize that these transitions occur in nature through a positive feedback that involves the midlatitude westerly winds, the mean temperature of the atmosphere, and the overturning of southern deep water. Cold glacial climates seem to have equatorward shifted westerlies, which allow more respired CO2 to accumulate in the deep ocean. Warm climates like the present have poleward shifted westerlies that flush respired CO2 out of the deep ocean.

771 citations


Journal ArticleDOI
21 Apr 2006-Science
TL;DR: Results indicate that Drake Passage opened before the Tasmanian Gateway, implying the late Eocene establishment of a complete circum-Antarctic pathway and circulation/productivity linkages are proposed as a mechanism for declining atmospheric carbon dioxide.
Abstract: Age estimates for the opening of Drake Passage range from 49 to 17 million years ago (Ma), complicating interpretations of the relationship between ocean circulation and global cooling. Secular variations of neodymium isotope ratios at Agulhas Ridge (Southern Ocean, Atlantic sector) suggest an influx of shallow Pacific seawater approximately 41 Ma. The timing of this connection and the subsequent deepening of the passage coincide with increased biological productivity and abrupt climate reversals. Circulation/productivity linkages are proposed as a mechanism for declining atmospheric carbon dioxide. These results also indicate that Drake Passage opened before the Tasmanian Gateway, implying the late Eocene establishment of a complete circum-Antarctic pathway.

534 citations


Journal ArticleDOI
TL;DR: The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of global overturning circulation as discussed by the authors.
Abstract: The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry is run with idealized forcing at a range of resolutions from coarse (2°) to eddy-permitting (1/6°). A comparison of coarse resolutions with fine resolutions indicates that explicit eddies affect both the structure of the overturning and the response of the overturning to wind stress changes. While the presence of resolved eddies does not greatly affect the prevailing qualitative picture of the ocean circulation, it alters the overturning cells involving the Southern Ocean transformation of dense deep waters and light waters of subtropical origin into intermediate waters. With resolved eddies, the surface-t...

459 citations


Journal ArticleDOI
TL;DR: In this article, multicentury integrations from two global coupled ocean-atmosphere-land-ice models (CM2.0 and CM2.1) are described in terms of their tropical Pacific climate and El Nino-Southern Oscillation (ENSO).
Abstract: Multicentury integrations from two global coupled ocean–atmosphere–land–ice models [Climate Model versions 2.0 (CM2.0) and 2.1 (CM2.1), developed at the Geophysical Fluid Dynamics Laboratory] are described in terms of their tropical Pacific climate and El Nino–Southern Oscillation (ENSO). The integrations are run without flux adjustments and provide generally realistic simulations of tropical Pacific climate. The observed annual-mean trade winds and precipitation, sea surface temperature, surface heat fluxes, surface currents, Equatorial Undercurrent, and subsurface thermal structure are well captured by the models. Some biases are evident, including a cold SST bias along the equator, a warm bias along the coast of South America, and a westward extension of the trade winds relative to observations. Along the equator, the models exhibit a robust, westward-propagating annual cycle of SST and zonal winds. During boreal spring, excessive rainfall south of the equator is linked to an unrealistic rever...

363 citations


Journal ArticleDOI
25 Aug 2006-Science
TL;DR: The changes in freshwater inputs and ocean storage occurred in conjunction with the amplifying North Atlantic Oscillation and rising air temperatures, and fresh water may now be accumulating in the Arctic Ocean and will likely be exported southward if and when the North AtlanticOscillation enters into a new high phase.
Abstract: Manifold changes in the freshwater cycle of high-latitude lands and oceans have been reported in the past few years. A synthesis of these changes in freshwater sources and in ocean freshwater storage illustrates the complementary and synoptic temporal pattern and magnitude of these changes over the past 50 years. Increasing river discharge anomalies and excess net precipitation on the ocean contributed approximately 20,000 cubic kilometers of fresh water to the Arctic and high-latitude North Atlantic oceans from lows in the 1960s to highs in the 1990s. Sea ice attrition provided another approximately 15,000 cubic kilometers, and glacial melt added approximately 2000 cubic kilometers. The sum of anomalous inputs from these freshwater sources matched the amount and rate at which fresh water accumulated in the North Atlantic during much of the period from 1965 through 1995. The changes in freshwater inputs and ocean storage occurred in conjunction with the amplifying North Atlantic Oscillation and rising air temperatures. Fresh water may now be accumulating in the Arctic Ocean and will likely be exported southward if and when the North Atlantic Oscillation enters into a new high phase.

351 citations


Journal ArticleDOI
TL;DR: The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous generations of GFDL climate models.
Abstract: The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous generations of GFDL climate models. This paper summarizes the new physical features of the models and examines the simulations that they produce. Of the two new coupled climate model versions 2.1 (CM2.1) and 2.0 (CM2.0), the CM2.1 model represents a major improvement over CM2.0 in most of the major oceanic features examined, with strikingly lower drifts in hydrographic fields such as temperature and salinity, more realistic ventilation of the deep ocean, and currents that are closer to their observed values. Regional analysis of the differences between the models highlights the importance of wind stress in determining the circulation, particularly in the Southern Ocean. At present, major errors in both models are associated with Northern Hemisphere Mode Waters and outflows from overflows, particularly the Mediterranean Sea and Red Sea.

296 citations


Journal ArticleDOI
TL;DR: In this paper, a scenario of the Mediterranean Sea is performed for the twenty-first century based on an ocean modelling approach, and a climate change IPCC-A2 scenario run with an atmosphere regional climate model is used to force a Mediterranean Sea high-resolution ocean model over the 1960-2099 period.
Abstract: A scenario of the Mediterranean Sea is performed for the twenty-first century based on an ocean modelling approach. A climate change IPCC-A2 scenario run with an atmosphere regional climate model is used to force a Mediterranean Sea high-resolution ocean model over the 1960–2099 period. For comparison, a control simulation as long as the scenario has also been carried out under present climate fluxes. This control run shows air–sea fluxes in agreement with observations, stable temperature and salinity characteristics and a realistic thermohaline circulation simulating the different intermediate and deep water masses described in the literature. During the scenario, warming and saltening are simulated for the surface (+3.1°C and + 0.48 psu for the Mediterranean Sea at the end of the twenty-first century) and for the deeper layers (+1.5°C and + 0.23 psu on average). These simulated trends are in agreement with observed trends for the Mediterranean Sea over the last decades. In addition, the Mediterranean thermohaline circulation (MTHC) is strongly weakened at the end of the twenty-first century. This behaviour is mainly due to the decrease in surface density and so the decrease in winter deep-water formation. At the end of the twenty-first century, the MTHC weakening can be evaluated as −40% for the intermediate waters and −80% for the deep circulation with respect to present-climate conditions. The characteristics of the Mediterranean Outflow Waters flowing into the Atlantic Ocean are also strongly influenced during the scenario.

292 citations


Journal ArticleDOI
30 Jun 2006-Science
TL;DR: Evidence from a North Atlantic deep-sea sediment core reveals that the largest climatic perturbation in the present interglacial, the 8200-year event, is marked by two distinct cooling events in the subpolar North Atlantic at 8490 and 8290 years ago.
Abstract: Evidence from a North Atlantic deep-sea sediment core reveals that the largest climatic perturbation in our present interglacial, the 8200-year event, is marked by two distinct cooling events in the subpolar North Atlantic at 8490 and 8290 years ago. An associated reduction in deep flow speed provides evidence of a significant change to a major downwelling limb of the Atlantic meridional overturning circulation. The existence of a distinct surface freshening signal during these events strongly suggests that the sequenced surface and deep ocean changes were forced by pulsed meltwater outbursts from a multistep final drainage of the proglacial lakes associated with the decaying Laurentide Ice Sheet margin.

289 citations


Journal ArticleDOI
22 Jun 2006-Nature
TL;DR: It is demonstrated that atmospheric CO2 and global biological export production are controlled by different regions of the Southern Ocean, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region.
Abstract: The Southern Ocean has central roles in carbon dioxide exchange between the oceans and the atmosphere, and in nutrient supply to the rest of the world's oceans — but these are physically separated due to the nature of ocean circulation, creating a biogeochemical divide. The area south of the divide has the most important influence on carbon dioxide exchange with the atmosphere; while the area to the north has the most significant effect on global oceanic productivity. Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air–sea balance of CO2 and global biological production1,2,3,4,5,6,7,8. Box model studies1,2,3,4 first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure ( ). This early research led to two important ideas: high latitude regions are more important in determining atmospheric than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO2 because it serves as a lid to a larger volume of the deep ocean5,6. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide7 and in controlling global biological production8. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air–sea CO2 balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO2 and global biological export production are controlled by different regions of the Southern Ocean. The air–sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

Journal ArticleDOI
TL;DR: In this article, the coupled ocean-atmosphere-ice response to variations in the Southern Annular Mode (SAM) is examined in the National Center for Atmospheric Research (NCAR) Community Coupled Climate Model (version 2).
Abstract: The coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode (SAM) is examined in the National Center for Atmospheric Research (NCAR) Community Coupled Climate Model (version 2). The model shows considerable skill in capturing the predominantly zonally symmetric SAM while regional deviations between model and observation SAM winds go a long way in explaining the generally small differences between simulated and observed SAM responses in the ocean and sea ice systems. Vacillations in the position and strength of the circumpolar winds and the ensuing variations in advection of heat and moisture result in a dynamic and thermodynamic forcing of the ocean and sea ice. Both meridional and zonal components of ocean circulation are modified through Ekman transport, which in turn leads to anomalous surface convergences and divergences that strongly affect the meridional overturning circulation and potentially the pathways of intermediate water ventilation. A heat budget analysis de...

Journal ArticleDOI
TL;DR: In this paper, the largest and potentially most important ocean near-surface biases are examined in the Community Climate System Model coupled simulation of present-day conditions, with the most striking being a band of excess rainfall across the South Pacific at about 8°S.
Abstract: The largest and potentially most important ocean near-surface biases are examined in the Community Climate System Model coupled simulation of present-day conditions. They are attributed to problems in the component models of the ocean or atmosphere, or both. Tropical biases in sea surface salinity (SSS) are associated with precipitation errors, with the most striking being a band of excess rainfall across the South Pacific at about 8°S. Cooler-than-observed equatorial Pacific sea surface temperature (SST) is necessary to control a potentially catastrophic positive feedback, involving precipitation along the equator. The strength of the wind-driven gyres and interbasin exchange is in reasonable agreement with observations, despite the generally too strong near-surface winds. However, the winds drive far too much transport through Drake Passage [190 Sv (1 Sv 10 6 m 3 s 1 )], but with little effect on SST and SSS. Problems with the width, separation, and location of western boundary currents and their extensions create large correlated SST and SSS biases in midlatitudes. Ocean model deficiencies are suspected because similar signals are seen in uncoupled ocean solutions, but there is no evidence of serious remote impacts. The seasonal cycles of SST and winds in the equatorial Pacific are not well represented, and numerical experiments suggest that these problems are initiated by the coupling of either or both wind components. The largest mean SST biases develop along the eastern boundaries of subtropical gyres, and the overall coupled model response is found to be linear. In the South Atlantic, surface currents advect these biases across much of the tropical basin. Significant precipitation responses are found both in the northwest Indian Ocean, and locally where the net result is the loss of an identifiable Atlantic intertropical convergence zone, which can be regained by controlling the coastal temperatures and salinities. Biases off South America and Baja California are shown to significantly degrade precipitation across the Pacific, subsurface ocean properties on both sides of the equator, and the seasonal cycle of equatorial SST in the eastern Pacific. These signals extend beyond the reach of surface currents, so connections via the atmosphere and subsurface ocean are implicated. Other experimental results indicate that the local atmospheric forcing is only part of the problem along eastern boundaries, with the representation of ocean upwelling another likely contributor.

Journal ArticleDOI
TL;DR: In this article, hindcast simulations with high-resolution ocean circulation models demonstrate a close correspondence of the SSH changes with the volume transport of the boundary current system in the Labrador Sea, suggesting the potential of a subpolar transport index as an element of a MOC monitoring system.
Abstract: [1] Analyses of sea surface height (SSH) records based on satellite altimeter data and hydrographic properties have suggested a considerable weakening of the North Atlantic subpolar gyre during the 1990s. Here we report hindcast simulations with high-resolution ocean circulation models that demonstrate a close correspondence of the SSH changes with the volume transport of the boundary current system in the Labrador Sea. The 1990s-decline, of about 15% of the long-term mean, appears as part of a decadal variability of the gyre transport driven by changes in both heat flux and wind stress associated with the North Atlantic Oscillation (NAO). The changes in the subpolar gyre, as manifested in the deep western boundary current off Labrador, reverberate in the strength of the meridional overturning circulation (MOC) in the subtropical North Atlantic, suggesting the potential of a subpolar transport index as an element of a MOC monitoring system.

Journal ArticleDOI
TL;DR: The tropical oceans have long been recognized as the most important region for large-scale ocean-atmosphere interactions, giving rise to coupled climate variations on several time scales.
Abstract: The tropical oceans have long been recognized as the most important region for large-scale ocean–atmosphere interactions, giving rise to coupled climate variations on several time scales. During the Tropical Ocean Global Atmosphere (TOGA) decade, the focus of much tropical ocean research was on understanding El Nino–related processes and on development of tropical ocean models capable of simulating and predicting El Nino. These studies led to an appreciation of the vital role the ocean plays in providing the memory for predicting El Nino and thus making seasonal climate prediction feasible. With the end of TOGA and the beginning of Climate Variability and Prediction (CLIVAR), the scope of climate variability and predictability studies has expanded from the tropical Pacific and ENSO-centric basis to the global domain. In this paper the progress that has been made in tropical ocean climate studies during the early years of CLIVAR is discussed. The discussion is divided geographically into three tropical ocean basins with an emphasis on the dynamical processes that are most relevant to the coupling between the atmosphere and oceans. For the tropical Pacific, the continuing effort to improve understanding of large- and small-scale dynamics for the purpose of extending the skill of ENSO prediction is assessed. This paper then goes beyond the time and space scales of El Nino and discusses recent research activities on the fundamental issue of the processes maintaining the tropical thermocline. This includes the study of subtropical cells (STCs) and ventilated thermocline processes, which are potentially important to the understanding of the low-frequency modulation of El Nino. For the tropical Atlantic, the dominant oceanic processes that interact with regional atmospheric feedbacks are examined as well as the remote influence from both the Pacific El Nino and extratropical climate fluctuations giving rise to multiple patterns of variability distinguished by season and location. The potential impact of Atlantic thermohaline circulation on tropical Atlantic variability (TAV) is also discussed. For the tropical Indian Ocean, local and remote mechanisms governing low-frequency sea surface temperature variations are examined. After reviewing the recent rapid progress in the understanding of coupled dynamics in the region, this study focuses on the active role of ocean dynamics in a seasonally locked east–west internal mode of variability, known as the Indian Ocean dipole (IOD). Influences of the IOD on climatic conditions in Asia, Australia, East Africa, and Europe are discussed. While the attempt throughout is to give a comprehensive overview of what is known about the role of the tropical oceans in climate, the fact of the matter is that much remains to be understood and explained. The complex nature of the tropical coupled phenomena and the interaction among them argue strongly for coordinated and sustained observations, as well as additional careful modeling investigations in order to further advance the current understanding of the role of tropical oceans in climate.

Journal ArticleDOI
TL;DR: In this paper, the observed surface wind changes have forced a southward shift and spin-up of the super gyre, which links the subtropical South Pacific, Indian and Atlantic Ocean circulation, advecting more warm water southward.
Abstract: [1] Recent climate trends over the Southern Hemisphere (SH) summer feature a strengthening of the circumpolar westerly and a weakening of the midlatitude westerly extending from the stratosphere to Earth's surface. Much of the change is attributable to Antarctic ozone depletion. However, the consequential ocean circulation changes are unknown. Here I demonstrate that the observed surface wind changes have forced a southward shift and spin-up of the super gyre, which links the subtropical South Pacific, Indian and Atlantic Ocean circulation, advecting more warm water southward. The circulation change includes a strengthening of the East Australian Current (EAC) flow passing through the Tasman Sea. The southward shift may be responsible for the observed unusually large warming in the SH midlatitude ocean and may contribute to the reported range extension to the south of many marine species in the South West Pacific.

Journal ArticleDOI
TL;DR: In this article, a combined assessment of ocean hydrography data and model results indicates that the expected anthropogenic weakening of the thermohaline circulation will remain within the range of natural variability during the next several decades.
Abstract: Analyses of ocean observations and model simulations suggest that there have been considerable changes in the thermohaline circulation (THC) during the last century. These changes are likely to be the result of natural multidecadal climate variability and are driven by low-frequency variations of the North Atlantic Oscillation (NAO) through changes in Labrador Sea convection. Indications of a sustained THC weakening are not seen during the last few decades. Instead, a strengthening since the 1980s is observed. The combined assessment of ocean hydrography data and model results indicates that the expected anthropogenic weakening of the THC will remain within the range of natural variability during the next several decades.

Journal ArticleDOI
TL;DR: In this paper, near-surface diffusivities associated with geostrophic eddies in the Southern Ocean are estimated by numerically monitoring the lengthening of idealized tracer contours as they are strained by surface geosprophic flow observed by satellite altimetry.
Abstract: Near-surface “effective diffusivities” associated with geostrophic eddies in the Southern Ocean are estimated by numerically monitoring the lengthening of idealized tracer contours as they are strained by surface geostrophic flow observed by satellite altimetry The resulting surface diffusivities show considerable spatial variability and are large (2000 m2 s−1) on the equatorward flank of the Antarctic Circumpolar Current and are small (500 m2 s−1) at the jet axis Regions of high and low effective diffusivity are shown to be collocated with regions of, respectively, weak and strong isentropic potential vorticity gradients The maps of diffusivity are used, along with climatological estimates of surface wind stress and air–sea buoyancy flux, to estimate surface meridional residual flows and the relative importance of Eulerian and eddy-induced circulation in the streamwise-averaged dynamics of the Antarctic Circumpolar Current

Journal ArticleDOI
TL;DR: In this paper, a new criterion, based on the shallowest extreme curvature of near surface layer density or temperature profiles, is established for demarking the mixed layer depth, h mix.
Abstract: A new criterion, based on the shallowest extreme curvature of near surface layer density or temperature profiles, is established for demarking the mixed layer depth, h mix. Using historical global hydrographic profile data, including conductivity-temperature-depth and expendable bathythermograph data obtained during World Ocean Circulation Experiment, its seasonal variability and monthly to interannual anomalies are computed. Unlike the more commonly used Δ criterion, the new criterion is able to deal with both different vertical resolutions of the data set and a large variety of observed stratification profiles. For about two thirds of the profiles our algorithm produces an h mix/c that is more reliable than the one of the Δ criterion. The uncertainty for h mix/c is ±5 m for high- (<5 m) and ±8 m for low- (<20 m) resolution profiles. A quality index, QImix, which compares the variance of a profile above h mix to the variance to a depth of 1.5 × h mix, shows that for the 70% of the profile data for which a clearly recognizable well-mixed zone exists near the surface, our criterion identifies the depth of the well-mixed zone in all cases. The standard deviation of anomalous monthly h mix/c is typically 20–70% of the long-term mean h mix/c . In the tropical Pacific the monthly mean anomalies of h mix/c are not well correlated with anomalies of sea surface temperature, which indicate that a variety of turbulent processes, other than surface heat fluxes, are important in the upper ocean there. Comparisons between observed h mix/c and Massachusetts Institute of Techonology/ocean general circulation model/Estimating the Circulation and Climate of the Ocean model simulated mixed layer depth indicate that the KPP algorithm captures in general a 30% smaller mixed layer depth than observed.

Journal ArticleDOI
TL;DR: In this article, a compilation of data on volumes and masses of evaporite deposits is used as the basis for reconstruction of the salinity of the ocean in the past, and the authors conclude that there have been significant changes in the mean salinity in the ocean following a general decline throughout the Phanerozoic, with the greatest changes related to major extractions of salt into the young ocean basins which developed during the Mesozoic as Pangaea broke apart.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed hypotheses and inferences concerning the nature of abrupt climate change, exemplified by the Dansgaard-Oeschger (D-O) events, and suggested that these events are more than a regional Greenland phenomenon.

Journal ArticleDOI
TL;DR: In this paper, the authors compare proxy evidence with climate model simulations in which the thermohaline ocean circulation is perturbed by a freshwater pulse into the Labrador Sea, showing a cooling that is mainly concentrated in the North Atlantic region.

Journal ArticleDOI
TL;DR: In this paper, two-dimensional simulations have been undertaken to investigate tidal and tide-dependent changes (tidal amplitudes, tidal current velocities, seasonal stratification, peak bed stress vectors) that have occurred in the NW European shelf seas during the last 20 ka.
Abstract: [1] Two-dimensional paleotidal simulations have been undertaken to investigate tidal and tide-dependent changes (tidal amplitudes, tidal current velocities, seasonal stratification, peak bed stress vectors) that have occurred in the NW European shelf seas during the last 20 ka. The simulations test the effect of shelf-wide isostatic changes of sea level by incorporating results from two different crustal rebound models, and the effect of the ocean-tide variability by setting open boundary values either fixed to the present state or variable according to the results of a global paleotidal model. The use of the different crustal rebound models does not affect the overall changes in tidal patterns, but the timing of the changes is sensitive to the local isostatic effects that differ between the models. The incorporation of ocean-tide changes greatly augments the amplitude of tides and tidal currents in the Celtic and Malin seas before 10 ka BP, and has a large impact on the distribution of seasonally stratified conditions, magnitude of peak bed stress vectors and tidal dissipation in the shelf seas. The predictions on seasonal stratification are supported by well-dated evidence on tidal mixing front migration in the Celtic Sea. Additional experiments using the global model suggest that the variability of offshore tides has been caused mainly by changes of eustatic sea level and ice-sheet extent. In particular, a large decrease observed at 10–8 ka BP is attributed to the opening of Hudson Strait accompanied by the retreat of the Laurentide Ice Sheet.

Journal ArticleDOI
30 Nov 2006-Nature
TL;DR: The authors used foraminifera from a suite of high-resolution sediment cores in the Florida Straits to show that the cross-current density gradient and vertical current shear of the Gulf Stream were systematically lower during the Little Ice Age (AD ~1200 to 1850) and also estimate that volume transport was ten per cent weaker than today's.
Abstract: The Gulf Stream transports approximately 31 Sv (1 Sv = 10^6 m^3 s^(-1)) of water and 13 10^(15) W of heat into the North Atlantic ocean The possibility of abrupt changes in Gulf Stream heat transport is one of the key uncertainties in predictions of climate change for the coming centuries Given the limited length of the instrumental record, our knowledge of Gulf Stream behaviour on long timescales must rely heavily on information from geologic archives Here we use foraminifera from a suite of high-resolution sediment cores in the Florida Straits to show that the cross-current density gradient and vertical current shear of the Gulf Stream were systematically lower during the Little Ice Age (AD ~1200 to 1850) We also estimate that Little Ice Age volume transport was ten per cent weaker than today's The timing of reduced flow is consistent with temperature minima in several palaeoclimate records, implying that diminished oceanic heat transport may have contributed to Little Ice Age cooling in the North Atlantic The interval of low flow also coincides with anomalously high Gulf Stream surface salinity, suggesting a tight linkage between the Atlantic Ocean circulation and hydrologic cycle during the past millennium

Journal ArticleDOI
01 Feb 2006-Tellus B
TL;DR: In this paper, the authors use a box model to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO 2 in such a formulation.
Abstract: Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO 2 . Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and ∼2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air–sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO 2 could then be explained as a natural consequence of the connection between the air–sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO 2 . Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO 2 in such a formulation. DOI: 10.1111/j.1600-0889.2005.00167.x

Journal ArticleDOI
05 Jan 2006-Nature
TL;DR: These results corroborate climate model inferences that a shift in deep-ocean circulation would deliver relatively warmer waters to the deep sea, thus producing further warming and can initiate abrupt deep-Ocean circulation changes in less than a few thousand years, but may have lasting effects.
Abstract: A global warming event that took place 55 million years ago at the end of the Palaeocene epoch is providing a picture of how Earth responds to climate change. The rapid rise in temperature was accompanied by turnovers in marine and terrestrial biota and changes in ocean chemistry and circulation. A study of carbon isotope records reveals a switch in the location of deep-water formation from the Southern Hemisphere to the Northern Hemisphere that was established within a few thousand years, but may have lasted for at least 40,000 years. This shows how greenhouse conditions can trigger quite rapid changes in deep ocean circulation that take much longer to be reversed. An exceptional analogue for the study of the causes and consequences of global warming occurs at the Palaeocene/Eocene Thermal Maximum, 55 million years ago. A rapid rise of global temperatures during this event accompanied turnovers in both marine1,2,3 and terrestrial biota4, as well as significant changes in ocean chemistry5,6 and circulation7,8. Here we present evidence for an abrupt shift in deep-ocean circulation using carbon isotope records from fourteen sites. These records indicate that deep-ocean circulation patterns changed from Southern Hemisphere overturning to Northern Hemisphere overturning at the start of the Palaeocene/Eocene Thermal Maximum. This shift in the location of deep-water formation persisted for at least 40,000 years, but eventually recovered to original circulation patterns. These results corroborate climate model inferences that a shift in deep-ocean circulation would deliver relatively warmer waters to the deep sea, thus producing further warming9. Greenhouse conditions can thus initiate abrupt deep-ocean circulation changes in less than a few thousand years, but may have lasting effects; in this case taking 100,000 years to revert to background conditions.

Journal ArticleDOI
TL;DR: Simulation of the response to an abrupt cooling event across the Northern Hemisphere using a coupled general circulation model and atmosphere-only experiments provide compelling evidence that changes in ocean circulation played a major role in this abrupt climate change event.
Abstract: Isotope, aerosol, and methane records document an abrupt cooling event across the Northern Hemisphere at 8.2 kiloyears before present (kyr), while separate geologic lines of evidence document the catastrophic drainage of the glacial Lakes Agassiz and Ojibway into the Hudson Bay at approximately the same time. This melt water pulse may have been the catalyst for a decrease in North Atlantic Deep Water formation and subsequent cooling around the Northern Hemisphere. However, lack of direct evidence for ocean cooling has lead to speculation that this abrupt event was purely local to Greenland and called into question this proposed mechanism. We simulate the response to this melt water pulse using a coupled general circulation model that explicitly tracks water isotopes and with atmosphere-only experiments that calculate changes in atmospheric aerosol deposition (specifically 10Be and dust) and wetland methane emissions. The simulations produce a short period of significantly diminished North Atlantic Deep Water and are able to quantitatively match paleoclimate observations, including the lack of isotopic signal in the North Atlantic. This direct comparison with multiple proxy records provides compelling evidence that changes in ocean circulation played a major role in this abrupt climate change event.

Journal ArticleDOI
TL;DR: In this paper, benthic foraminiferal isotope data sets have been assembled to examine δ13C gradients between the three major deep water masses (i.e., Northern Component Water, Southern Ocean Water, and Pacific Ocean Water). Composite records are reported on an astronomical timescale, and a nonparametric curve-fitting technique is used to produce regional estimates of δ 13C for each water mass.
Abstract: In the North Atlantic Ocean, flow of North Atlantic Deep Water (NADW), and of its ancient counterpart Northern Component Water (NCW), across the Greenland-Scotland Ridge (GSR) is thought to have played an important role in ocean circulation. Over the last 60 Ma, the Iceland Plume has dynamically supported an area which encompasses the GSR. Consequently, bathymetry of the GSR has varied with time due to a combination of lithospheric plate cooling and fluctuations in the temperature and buoyancy within the underlying convecting mantle. Here, we reassess the importance of plate cooling and convective control on this northern gateway for NCW flow during the Neogene period, following Wright and Miller (1996). To tackle the problem, benthic foraminiferal isotope data sets have been assembled to examine δ13C gradients between the three major deep water masses (i.e., Northern Component Water, Southern Ocean Water, and Pacific Ocean Water). Composite records are reported on an astronomical timescale, and a nonparametric curve-fitting technique is used to produce regional estimates of δ13C for each water mass. Confidence bands were calculated, and error propagation techniques used to estimate %NCW and its uncertainty. Despite obvious reservations about using long-term variations of δ13C from disparate analyses and settings, and despite considerable uncertainties in our understanding of ancient oceanic transport pathways, the variation of NCW through time is consistent with independent estimates of the temporal variation of dynamical support associated with the Iceland Plume. Prior to 12 Ma, δ13C patterns overlap and %NCW cannot be isolated. Significant long-period variations are evident, which are consistent with previously published work. From 12 Ma, when lithospheric cooling probably caused the GSR to submerge completely, long-period δ13C patterns diverge significantly and allow reasonable %NCW estimates to be made. Our most robust result is a dramatic increase in NCW overflow between 6 and 2 Ma when dynamical support generated by the Iceland Plume was weakest. Between 6 and 12 Ma a series of variations in NCW overflow have been resolved.

Journal ArticleDOI
TL;DR: In this paper, it is pointed out that accounting for an ocean surface velocity dependence in the wind stress τ can lead to a significant reduction in the rate at which winds input mechanical energy to the geostrophic circulation.
Abstract: It is pointed out that accounting for an ocean surface velocity dependence in the wind stress τ can lead to a significant reduction in the rate at which winds input mechanical energy to the geostrophic circulation Specifically, the wind stress is taken to be a quadratic function of Ua − uo, where Ua and uo are the 10-m wind and ocean surface velocity, respectively Because |Ua| is typically large relative to |uo|, accounting for a uo dependence leads only to relatively small changes in τ The change to the basin-averaged wind power source, however, is considerably larger Scaling arguments and quasigeostrophic simulations in a basin setting are presented They suggest that the power source (or rate of energy input) is reduced by roughly 20%–35%

Journal ArticleDOI
TL;DR: A review of the physical basis and the potential for decadal climate predictability over the Atlantic and its adjacent land areas is presented in this paper, where the authors discuss the physical and modeling basis for predicting climate change in the Atlantic Ocean.
Abstract: This review paper discusses the physical basis and the potential for decadal climate predictability over the Atlantic and its adjacent land areas. Many observational and modeling studies describe pronounced decadal and multidecadal variability in the Atlantic Ocean. However, it still needs to be quantified to which extent the variations in the ocean drive variations in the atmosphere and over land. In particular, although a clear impact of the Tropics on the midlatitudes has been demonstrated, it is unclear if and how the extratropical atmosphere responds to midlatitudinal sea surface temperature anomalies. Although the mechanisms behind the decadal to multidecadal variability in the Atlantic sector are still controversial, there is some consensus that some of the longer-term multidecadal variability is driven by variations in the thermohaline circulation. The variations in the North Atlantic thermohaline circulation appear to be predictable one to two decades ahead, as shown by a number of perfect model predictability experiments. The next few decades will be dominated by these multidecadal variations, although the effects of anthropogenic climate change are likely to introduce trends. Some impact of the variations of the thermohaline circulation on the atmosphere has been demonstrated in some studies so that useful decadal predictions with economic benefit may be possible.