scispace - formally typeset
Search or ask a question

Showing papers on "Phagosome published in 2002"


Journal ArticleDOI
TL;DR: The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.
Abstract: Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.

685 citations


Journal ArticleDOI
12 Jul 2002-Cell
TL;DR: This study has found that fusion of the endoplasmic reticulum (ER) with the macrophage plasmalemma, underneath phagocytic cups, is a source of membrane for phagosome formation in macrophages.

683 citations


Journal ArticleDOI
25 Jan 2002-Science
TL;DR: It is shown that L. pneumophilaproduce a protein called RalF that functions as an exchange factor for the ADP ribosylation factor (ARF) family of guanosine triphosphatases (GTPases) and is a substrate of the Dot/Icm secretion apparatus.
Abstract: The intracellular pathogen Legionella pneumophila subverts vesicle traffic in eukaryotic host cells to create a vacuole that supports replication. The dot/icm genes encode a protein secretion apparatus that L. pneumophila require for biogenesis of this vacuole. Here we show that L. pneumophila produce a protein called RalF that functions as an exchange factor for the ADP ribosylation factor (ARF) family of guanosine triphosphatases (GTPases). The RalF protein is required for the localization of ARF on phagosomes containing L. pneumophila. Translocation of RalF protein through the phagosomal membrane is a dot/icm-dependent process. Thus, RalF is a substrate of the Dot/Icm secretion apparatus.

534 citations


Journal ArticleDOI
TL;DR: Data indicate that L. pneumophila intercepts vesicular traffic from endoplasmic-reticulum exit sites to create an organelle that permits intracellular replication and prevents destruction by the host cell.
Abstract: It is unknown how Legionella pneumophila cells escape the degradative lysosomal pathway after phagocytosis by macrophages and replicate in an organelle derived from the endoplasmic reticulum. Here we show that, after internalization, L. pneumophila-containing phagosomes recruit early secretory vesicles. Once L. pneumophila phagosomes have intercepted early secretory vesicles they begin to acquire proteins residing in transitional and rough endoplasmic reticulum. The functions of Sar1 and ADP-ribosylation factor-1 are important for biogenesis of the L. pneumophila replicative organelle. These data indicate that L. pneumophila intercepts vesicular traffic from endoplasmic-reticulum exit sites to create an organelle that permits intracellular replication and prevents destruction by the host cell.

414 citations


Journal ArticleDOI
TL;DR: This review will focus on recent studies that have identified bacterial proteins and host processes that play a concerted role in transporting Legionella to the ER.
Abstract: Phagosomes containing the bacterial pathogen Legionella pneumophila are transported to the ER after macrophage internalization. To modulate phagosome transport, Legionella use a specialized secretion system that injects bacterial proteins into eukaryotic cells. This review will focus on recent studies that have identified bacterial proteins and host processes that play a concerted role in transporting Legionella to the ER.

301 citations


Journal ArticleDOI
TL;DR: The view is emerging that lysosomes are organelles for the storage of hydrolases, perhaps in an inactivated form, and such systems would permit simultaneous regulation of a number of unrelatedhydrolases.
Abstract: The endolysosomal system comprises a unique environment for proteolysis, which is regulated in a manner that apparently does not involve protease inhibitors. The system comprises a series of membrane-bound intracellular compartments, within which endocytosed material and redundant cellular components are hydrolysed. Endocytosed material tends to flow vectorially through the system, proceeding through the early endosome, the endosome carrier vesicle, the late endosome and the lysosome. Phagocytosis and autophagy provide alternative entry points into the system. Late endosomes, lysosome/late endosome hybrid organelles, phagosomes and autophagosomes are the principal sites for proteolysis. In each case, hydrolytic competence is due to components of the endolysosomal system, i.e. proteases, lysosome-associated membrane proteins, H(+)-ATPases and possibly cysteine transporters. The view is emerging that lysosomes are organelles for the storage of hydrolases, perhaps in an inactivated form. Once a substrate has entered a proteolytically competent environment, the rate-limiting proteolytic steps are probably effected by cysteine endoproteinases. As these are affected by pH and possibly redox potential, they may be regulated by the organelle luminal environment. Regulation is probably also affected, among other factors, by organelle fusion reactions, whereby the meeting of enzyme and substrate may be controlled. Such systems would permit simultaneous regulation of a number of unrelated hydrolases.

301 citations


Journal ArticleDOI
TL;DR: The integrity of BrucellA LPS on the bacterial surface is one of the required factors for Brucella intracellular survival, and therefore for virulence.

295 citations


Journal ArticleDOI
TL;DR: The data show that the acidic pH optimum of LLO results from an adaptive mutation that acts to limit cytolytic activity to acidic vesicles and prevent damage in the host cytosol, a strategy also used by host cells to compartmentalize lysosomal hydrolases.
Abstract: Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. The pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates bacterial escape from vesicles and is ∼10-fold more active at an acidic than neutral pH. By swapping dissimilar residues from a pH-insensitive orthologue, perfringolysin O (PFO), we identified leucine 461 as unique to pathogenic Listeria and responsible for the acidic pH optimum of LLO. Conversion of leucine 461 to the threonine present in PFO increased the hemolytic activity of LLO almost 10-fold at a neutral pH. L. monocytogenes synthesizing LLO L461T, expressed from its endogenous site on the bacterial chromosome, resulted in a 100-fold virulence defect in the mouse listeriosis model. These bacteria escaped from acidic phagosomes and initially grew normally in cells and spread cell to cell, but prematurely permeabilized the host membrane and killed the cell. These data show that the acidic pH optimum of LLO results from an adaptive mutation that acts to limit cytolytic activity to acidic vesicles and prevent damage in the host cytosol, a strategy also used by host cells to compartmentalize lysosomal hydrolases.

288 citations


Journal ArticleDOI
TL;DR: Results are suggestive of a novel mechanism of intracellular survival by an encapsulated organism, whereby ingestion is followed by damage to the phagosomal membrane resulting in continuity with the cytoplasm, accumulation of polysaccharide-containing vesicles, and possibly, production of a structurally different polysacCharide.
Abstract: Cryptococcus neoformans (CN), an encapsulated, ubiquitous environmental yeast, is pathogenic for humans, primarily those with compromised immune function. CN is believed to be a facultative intracellular pathogen. Time-lapsed video microscopy revealed that yeast began to replicate and divide 2 hours after ingestion by J774.16 macrophage cells, with the average cell hosting 10-40 organisms of varying morphologies before ultimately lysing and releasing organisms, either singly or in clumps. Intracellular growth was accompanied by the accumulation of polysaccharide-filled vesicles in the macrophage. Studies with fluorescently labeled dextran revealed that the phagolysosomal compartment became leaky during the course of intracellular infection. Consistent with this observation, phagosomes containing CN had an increased pH relative to similar phagosomes containing inert magnetic beads, as indicated by a colorimetric change in the pH-sensitive Lysosensor dye. Immunocytochemistry revealed differences in the reactivity of polysaccharide elaborated by CN inside macrophages relative to that expressed in vitro. Taken together these results are suggestive of a novel mechanism of intracellular survival by an encapsulated organism, whereby ingestion is followed by damage to the phagosomal membrane resulting in continuity with the cytoplasm, accumulation of polysaccharide-containing vesicles, and possibly, production of a structurally different polysaccharide.

287 citations


Journal ArticleDOI
TL;DR: Fluorescence-activated cell sorter analysis and fluorescence microscopy showed that the virB promoter is induced in macrophages within 3 h after infection, and phagosome acidification was shown to be the major signal inducing intracellular expression.
Abstract: A type IV secretion system similar to the VirB system of the phytopathogen Agrobacterium tumefaciens is essential for the intracellular survival and multiplication of the mammalian pathogen Brucella. Reverse transcriptase-PCR showed that the 12 genes encoding the Brucella suis VirB system form an operon. Semiquantitative measurements of virB mRNA levels by slot blotting showed that transcription of the virB operon, but not the flanking genes, is regulated by environmental factors in vitro. Flow cytometry used to measure green fluorescent protein expression from the virB promoter confirmed the data from slot blots. Fluorescence-activated cell sorter analysis and fluorescence microscopy showed that the virB promoter is induced in macrophages within 3 h after infection. Induction only occurred once the bacteria were inside the cells, and phagosome acidification was shown to be the major signal inducing intracellular expression. Because phagosome acidification is essential for the intracellular multiplication of Brucella, we suggest that it is the signal that triggers the secretion of unknown effector molecules. These effector molecules play a role in the remodeling of the phagosome to create the unique intracellular compartment in which Brucella replicates.

273 citations


Journal ArticleDOI
TL;DR: Through selective disruption of phosphoinositide 3-kinase activity and the use of green fluorescent protein tagged derivatives of domains capable of specifically binding the lipid products of PI3Ks in vivo, it has been shown that this family of signalling enzymes have vital and distinct roles in chemotaxis, phagocytosis and phagosome maturation in leukocytes.

Journal ArticleDOI
TL;DR: A model of the present understanding of the signal transduction events that regulate phagocytosis mediated by FcR is presented, which shows how the use of particular signaling molecules may change for different receptors and may also vary depending on the activation or differentiation state of the cell.
Abstract: Phagocytosis is the process whereby cells engulf large particles, usually over 0.5 micro m in diameter. Phagocytosis is triggered by the interaction of opsonins that cover the particle to be internalized with specific receptors on the surface of the phagocyte. The best-studied phagocytic receptors include the Fc receptors (FcR) that bind to the Fc portion of immunoglobulins. Cross-linking of FcR on the phagocyte initiates a variety of signals, which lead through the reorganization of the actin cytoskeleton, and membrane remodeling, to the formation of the phagosome. From recent data, it is becoming clear that FcR-mediated phagocytosis occurs as a series of steps that are regulated in a nonlinear manner and that signaling for phagocytosis does not terminate when the phagosome is formed. Several lipid molecules localize around the nascent phagosome and function as initiators of important signaling pathways for the late stages of phagolysosome formation. In addition, the use of particular signaling molecules may change for different receptors and may also vary depending on the activation or differentiation state of the cell. This review focuses on this new information and presents a model of our present understanding of the signal transduction events that regulate phagocytosis mediated by FcR.

Journal ArticleDOI
TL;DR: It is found that inhibition of the Rho --> ROK --> myosin-II pathway caused a decreased accumulation of Arp2/3 complex and F-actin around bound particles, which led to a reduction in CR-mediated phagocytic engulfment.

Journal ArticleDOI
TL;DR: It is found that an ingested particle sequentially encounters distinct protease activities during phagosomal maturation, which is a tightly regulated process that varies according to the type and differentiation stage of the phagocyte.
Abstract: Here, we describe a new approach designed to monitor the proteolytic activity of maturing phagosomes in live antigen-presenting cells. We find that an ingested particle sequentially encounters distinct protease activities during phagosomal maturation. Incorporation of active proteases into the phagosome of the macrophage cell line J774 indicates that phagosome maturation involves progressive fusion with early and late endocytic compartments. In contrast, phagosome biogenesis in bone marrow–derived dendritic cells (DCs) and macrophages preferentially involves endocytic compartments enriched in cathepsin S. Kinetics of phagosomal maturation is faster in macrophages than in DCs. Furthermore, the delivery of active proteases to the phagosome is significantly reduced after the activation of DCs with lipopolysaccharide. This observation is in agreement with the notion that DCs prevent the premature destruction of antigenic determinants to optimize T cell activation. Phagosomal maturation is therefore a tightly regulated process that varies according to the type and differentiation stage of the phagocyte.

Journal ArticleDOI
TL;DR: Glycoconjugates released by the intracellular bacilli traffic through the host cell and are released through exocytosis, which represent both antigens for immune recognition and modulators of immune function.
Abstract: Pathogenic Mycobacterium reside inside vacuoles in their host macrophages. These vacuoles fail to fuse with lysosomes yet interact with early endosomes. Glycoconjugates released by the intracellular bacilli traffic through the host cell and are released through exocytosis. These molecules represent both antigens for immune recognition and modulators of immune function. The molecules play key roles in the induction and maintenance of the granuloma, a tissue response that limits bacterial spread yet ensures persistence of the infection.

Journal ArticleDOI
TL;DR: It is concluded that the NADPH oxidase controls the phagosomal pH by multiple mechanisms that include reduced proton delivery to the lumen, increased luminal proton consumption, and enhanced backflux into the cytosol.

Journal ArticleDOI
TL;DR: The biochemical and morphological evidence for the survival of some bacterial pathogens by replicating within an autophagosome‐like compartment is examined.
Abstract: Bacteria have evolved a variety of mechanisms to invade eukaryotic cells and survive intracellularly. Once inside, bacterial pathogens often modulate their phagosome to establish an intracellular niche for survival and replication. A subset of intracellular pathogens, including Brucella abortus, Legionella pneumophila and Porphyromonas gingivalis, are diverted from the endosomal pathway to the auto-phagic pathway. Once within the autophagosome, each in some way presumably modifies this compartment to establish an environment necessary for its survival. Transit into autophagosomes represents an avenue by which to escape host defences. In this review, we examine the biochemical and morphological evidence for the survival of some bacterial pathogens by replicating within an autophagosome-like compartment.

Journal ArticleDOI
TL;DR: The results suggest that lipid rafts may provide a portal for entry of Brucella into murine macrophages under nonopsonic conditions, thus allowing phagosome-lysosome fusion inhibition, and provide further evidence to support the idea that the Phagosome maturation inhibition is restricted at the phagosomal membrane.
Abstract: Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. We have previously shown that the maturation inhibition of the Brucella-containing phagosome appears to be restricted at the phagosomal membrane, but the precise molecular mechanisms and factors involved in this inhibition have yet to be identified. Interestingly, recent studies have revealed that caveolae or lipid rafts are implicated in the entry of some microorganisms into host cells and mediate an endocytic pathway avoiding fusion with lysosomes. In this study, we investigated the role of cholesterol and the ganglioside GM(1), two components of lipid rafts, in entry and short-term survival of Brucella suis in murine macrophages, by using cholesterol-sequestering (filipin and beta-methyl cyclodextrin) and GM(1)-binding (cholera toxin B) molecules. Our results suggest that lipid rafts may provide a portal for entry of Brucella into murine macrophages under nonopsonic conditions, thus allowing phagosome-lysosome fusion inhibition, and provide further evidence to support the idea that the phagosome maturation inhibition is restricted at the phagosomal membrane.

Journal ArticleDOI
TL;DR: The kinetics of acquisition of the different late endosome/lysosome 'markers' by the phagosomes were similar to those measured after infection with metacyclics, which suggests that promastigote phagocytosis mainly occurs in a polarized manner, with the cell body entering the macrophages first.
Abstract: Protozoan parasites Leishmania alternate between a flagellated promastigote form and an amastigote form. In their mammalian hosts, Leishmania survive and multiply in macrophages. Both forms can be internalized by these host cells at different stages of the infectious process and eventually establish themselves within parasitophorous vacuoles exhibiting phagolysosomal properties. To determine whether the biogenesis of these organelles differs according to the parasitic stage used to initiate infection, we compared their formation kinetics after phagocytosis of either metacyclic promastigotes or amastigotes of L. amazonensis or of L. major by mouse bone-marrow-derived macrophages pre-exposed or not to IFN-γ. After 10 minutes of contact, an accumulation of F-actin was observed around the promastigotes and amatigotes undergoing phagocytosis or those that had already been internalized. This accumulation was transient and rapidly disappeared at later times. At 30 minutes, most of the promastigotes were located in long, narrow organelles that were exactly the same shape as the parasites. The latter were elongated with their cell bodies near to the macrophage nucleus and their flagella towards the periphery. This suggests that promastigote phagocytosis mainly occurs in a polarized manner, with the cell body entering the macrophages first. Most, if not all, of the phagocytosed promastigotes were located in organelles that rapidly acquired phagolysosomal properties. At 30 minutes, lamp-1, macrosialin, cathepsins B and D were detected in 70-98% of these compartments and about 70% of them were surrounded by rab7p. These late endosome/lysosome `markers9 were recruited through fusion with late endocytic compartments. Indeed, when late endosomes/lysosomes were loaded with fluorescein dextran, 81-98% of the promastigote-harbouring compartments contained the endocytic tracer 30 minutes after infection. Electron microscopy of infected macrophages previously loaded with peroxidase confirmed that the phagosomes rapidly fused with late endocytic compartments. When the amastigote stage of L. amazonensis was used to initiate infection, the kinetics of acquisition of the different late endosome/lysosome `markers9 by the phagosomes were similar to those measured after infection with metacyclics. However, more rab7p + -phagosomes were observed at early time points (e.g. 90% were rab7p + at 30 minutes). The early endosome `markers9, EEA1 and the transferrin receptor, were hardly detected in parasite-containing compartments regardless of the parasitic stage used to infect macrophages and the time after infection. In conclusion, both metacyclic- and amastigote-containing phagosomes fuse with late endosomes/lysosomes within 30 minutes. However, with L. amazonensis , the time required for the formation of the huge parasitophorous vacuoles, which are characteristic of this species, was much shorter after infection with amastigotes than after infection with metacyclic promastigotes. This indicates that the initial fusions with late endosomes/lysosomes are followed by a stage-specific sequence of events.

Journal ArticleDOI
TL;DR: Results suggest that PI 3-kinase deactivates PAK1, and that this may be needed for phagosome closure.
Abstract: Particle ingestion by phagocytosis results from sequential rearrangements of the actin cytoskeleton and overlying membrane. To assemble a chronology of molecular events during phagosome formation and to examine the contributions of phosphoinositide 3-kinase (PI 3-kinase) to these dynamics, a method was developed for synchronizing Fcγ receptor-mediated phagocytosis by murine macrophages. Erythrocytes opsonized with complement component C3bi were bound to macrophages at 37°C, a condition that does not favor particle phagocytosis. Addition of soluble anti-erythrocyte IgG resulted in rapid opsonization of the bound erythrocytes, followed by their immediate internalization via phagocytosis. Cellular content of F-actin, as measured by binding of rhodamine-phalloidin, increased transiently during phagocytosis, and this increase was not diminished by inhibitors of PI 3-kinase. Immunofluorescence localization of myosins in macrophages fixed at various times during phagocytosis indicated that myosins II and IXb were concentrated in early phagosomes, myosin IC increased later, and myosin V appeared after phagosome closure. Other cytoskeletal proteins showed similar variations in the timing of their appearance in phagosomes. The PI 3-kinase inhibitor wortmannin did not change the dynamics of PI 3-kinase or ezrin localization but prevented the loss of PAK1 from phagosomes. These results suggest that PI 3-kinase deactivates PAK1, and that this may be needed for phagosome closure.

Journal ArticleDOI
TL;DR: It is shown that C. burnetii survival in THP-1 monocytes was not related to phagosomal pH because bacterial vacuoles were acidic independently of C. burningetii virulence, and that IFN-γ mediates C.Burnetii killing via two distinct mechanisms, phagosome maturation, andphagosome alkalinization.
Abstract: The subversion of microbicidal functions of macrophages by intracellular pathogens is critical for their survival and pathogenicity. The replication of Coxiella burnetii, the agent of Q fever, in acidic phagolysosomes of nonphagocytic cells has been considered as a paradigm of intracellular life of bacteria. We show in this study that C. burnetii survival in THP-1 monocytes was not related to phagosomal pH because bacterial vacuoles were acidic independently of C. burnetii virulence. In contrast, virulent C. burnetii escapes killing in resting THP-1 cells by preventing phagosome maturation. Indeed, C. burnetii vacuoles did not fuse with lysosomes because they were devoid of cathepsin D, and did not accumulate lysosomal trackers; the acquisition of markers of late endosomes and late endosomes-early lysosomes was conserved. In contrast, avirulent variants of C. burnetii were eliminated by monocytes and their vacuoles accumulated late endosomal and lysosomal markers. The fate of virulent C. burnetii in THP-1 monocytes depends on cell activation. Monocyte activation by IFN-gamma restored C. burnetii killing and phagosome maturation as assessed by colocalization of C. burnetii with active cathepsin D. In addition, when IFN-gamma was added before cell infection, it was able to stimulate C. burnetii killing but it also induced vacuolar alkalinization. These findings suggest that IFN-gamma mediates C. burnetii killing via two distinct mechanisms, phagosome maturation, and phagosome alkalinization. Thus, the tuning of vacuole biogenesis is likely a key part of C. burnetii survival and the pathophysiology of Q fever.

Journal ArticleDOI
TL;DR: How particular microbes may target particular host factors to short-circuit membrane traffic in macrophages is discussed, supporting a new paradigm in which pathogens evade lysosomal degradation by entering macrophage within specialized lipid microdomains of the plasma membrane.

Journal ArticleDOI
TL;DR: In cells whose endosomes were pre-labeled with TRITC-dextran and then fed yeast particles, VatM-GFP was delivered to newly formed yeast phagosomes with the same time course as TRitC- dextran, consistent with transfer via a direct fusion of endosome with phagosome, suggesting that vacuolar proton pumps are recycled by fusion of advanced with newly formed endosomers.
Abstract: The vacuolar H(+)-ATPase (V-ATPase) is a multi-subunit enzyme that plays important roles in eukaryotic cells. In Dictyostelium, it is found primarily in membranes of the contractile vacuole complex, where it energizes fluid accumulation by this osmoregulatory organelle and also in membranes of endolysosomes, where it serves to acidify the endosomal lumen. In the present study, a fusion was created between vatM, the gene encoding the 100 kDa transmembrane subunit of the V-ATPase, and the gene encoding Green Fluorescent Protein (GFP). When expressed in Dictyostelium cells, this fusion protein, VatM-GFP, was correctly targeted to contractile vacuole and endolysosomal membranes and was competent to direct assembly of the V-ATPase enzyme complex. Protease treatment of isolated endosomes indicated that the GFP moiety, located on the C-terminus of VatM, was exposed to the cytoplasmic side of the endosomal membrane rather than to the lumenal side. VatM-GFP labeling of the contractile vacuole complex revealed clearly the dynamics of this pleiomorphic vesiculotubular organelle. VatM-GFP labeling of endosomes allowed direct visualization of the trafficking of vacuolar proton pumps in this pathway, which appeared to be entirely independent from the contractile vacuole membrane system. In cells whose endosomes were pre-labeled with TRITC-dextran and then fed yeast particles, VatM-GFP was delivered to newly formed yeast phagosomes with the same time course as TRITC-dextran, consistent with transfer via a direct fusion of endosomes with phagosomes. Several minutes were required before the intensity of the VatM-GFP labeling of new phagosomes reached the level observed in older phagosomes, suggesting that this fusion process was progressive and continuous. VatM-GFP was retrieved from the phagosome membrane prior to exocytosis of the indigestible remnants of the yeast particle. These data suggest that vacuolar proton pumps are recycled by fusion of advanced with newly formed endosomes.

Journal ArticleDOI
TL;DR: This initial molecular description of phagocytosis demonstrates the feasibility of a comprehensive analysis of phagosomal lipids and proteins in genetically modified strains.
Abstract: Molecular mechanisms of endocytosis in the genetically and biochemically tractable professional phagocyte Dictyostelium discoideum reveal a striking degree of similarity to higher eukaryotic cells. Pulse-chase feeding with latex beads allowed purification of phagosomes at different stages of maturation. Gentle ATP stripping of an actin meshwork entrapping contaminating organelles resulted in a 10-fold increase in yield and purity, as confirmed by electron microscopy. Temporal profiling of signaling, cytoskeletal, and trafficking proteins resulted in a complex molecular fingerprint of phagosome biogenesis and maturation. First, nascent phagosomes were associated with coronin and rapidly received a lysosomal glycoprotein, LmpB. Second, at least two phases of delivery of lysosomal hydrolases (cathepsin D [CatD] and cysteine protease [CPp34]) were accompanied by removal of plasma membrane components (PM4C4 and biotinylated surface proteins). Third, a phase of late maturation, preparing for final exocytosis of undigested material, included quantitative recycling of hydrolases and association with vacuolin. Also, lysosomal glycoproteins of the Lmp family showed distinct trafficking kinetics. The delivery and recycling of CatD was directly visualized by confocal microscopy. This heavy membrane traffic of cargos was precisely accompanied by regulatory proteins such as the Rab7 GTPases and the endosomal SNAREs Vti1 and VAMP7. This initial molecular description of phagocytosis demonstrates the feasibility of a comprehensive analysis of phagosomal lipids and proteins in genetically modified strains.

Journal ArticleDOI
TL;DR: PIPKIα appears to contribute to the transient changes in PIP2 levels that are associated with, and likely required for, the recruitment and regulation of actin-modulating proteins.

Journal ArticleDOI
TL;DR: The purpose of this review is to highlight common features of different fusion reactions and the concepts that emerged from them but also to stress the differences and challenge parts of the current hypotheses.
Abstract: ▪ Abstract Membrane fusion is a fundamental biochemical reaction and the final step in all vesicular trafficking events. It is crucial for the transfer of proteins and lipids between different compartments and for exo- and endocytic traffic of signaling molecules and receptors. It leads to the reconstruction of organelles such as the Golgi or the nuclear envelope, which decay into fragments during mitosis. Hence, controlled membrane fusion reactions are indispensible for the compartmental organization of eukaryotic cells; for their communication with the environment via hormones, neurotransmitters, growth factors, and receptors; and for the integration of cells into multicellular organisms. Intracellular pathogenic bacteria, such as Mycobacteria or Salmonellae, have developed means to control fusion reactions in their host cells. They persist in phagosomes whose fusion with lysosomes they actively suppress—a means to ensure survival inside host cells. The past decade has witnessed rapid progress in the el...

Journal ArticleDOI
TL;DR: It is concluded that Rac is recruited to Fcgamma membrane receptors in its inactive, GDP-bound state and that Vav regulates phagocytosis through subsequent catalysis of GDP/GTP exchange on Rac.
Abstract: Phagocytosis is the process whereby cells direct the spatially localized, receptor-driven engulfment of particulate materials. It proceeds via remodeling of the actin cytoskeleton and shares many of the core cytoskeletal components involved in adhesion and migration. Small GTPases of the Rho family have been widely implicated in coordinating actin dynamics in response to extracellular signals and during diverse cellular processes, including phagocytosis, yet the mechanisms controlling their recruitment and activation are not known. We show herein that in response to ligation of Fc receptors for IgG (FcgammaR), the guanine nucleotide exchange factor Vav translocates to nascent phagosomes and catalyzes GTP loading on Rac, but not Cdc42. The Vav-induced Rac activation proceeds independently of Cdc42 function, suggesting distinct roles for each GTPase during engulfment. Moreover, inhibition of Vav exchange activity or of Cdc42 activity does not prevent Rac recruitment to sites of particle attachment. We conclude that Rac is recruited to Fcgamma membrane receptors in its inactive, GDP-bound state and that Vav regulates phagocytosis through subsequent catalysis of GDP/GTP exchange on Rac.

Journal ArticleDOI
TL;DR: It is speculated that the type IV secretion system serves to secrete unknown effector molecules, which allow Brucella to pervert the host cell endosomal pathways and to create a novel intracellular compartment in which it can replicate.

Journal ArticleDOI
TL;DR: Unexpectedly, a single amino acid substitution in LLO L461T results in a molecule more active at neutral pH and promoting premature permeabilization of the infected cells, leading to attenuated virulence, highlighting how subtle changes in proteins can be exploited by bacterial pathogens to establish and maintain the integrity of their specific niches.
Abstract: Cholesterol-dependent cytolysins (CDCs)* * Abbreviations used in this paper: CDC, cholesterol-dependent cytolysin; LLO, listeriolysin O; PFO, perfringolysin O; SLO, streptolysin O. are produced by a large number of pathogenic gram–positive bacteria. A member of this family, listeriolysin O (LLO), is produced by the intracellular pathogen Listeria monocytogenes . A unique feature of LLO is its low optimal pH activity ( ∼ 6) which permits escape of the bacterium from the phagosome into the host cell cytosol without damaging the plasma membrane of the infected cell. In a recent study (Glomski et al., 2002, this issue), Portnoy9s group has addressed the molecular mechanism underlying the pH sensitivity of LLO. Unexpectedly, a single amino acid substitution in LLO L461T results in a molecule more active at neutral pH and promoting premature permeabilization of the infected cells, leading to attenuated virulence. This finding highlights how subtle changes in proteins can be exploited by bacterial pathogens to establish and maintain the integrity of their specific niches.

Journal ArticleDOI
TL;DR: Results indicate that syntaxins 13 and 7 are both required for interaction of endosomes and/or lysosomes with the phagosome, but play distinct roles in the maturation process.
Abstract: The phagosome is a dynamic organelle that undergoes progressive changes to acquire the machinery required to kill and degrade internalized foreign particles. This maturation process involves sequential interaction of newly formed phagosomes with several components of the endocytic pathway. The proteins that mediate the ordered fusion of endosomes and lysosomes with the phagosome are not known. In this study, we investigated the possible role of syntaxins present in the endo/lysosomal pathway in directing phagosomal maturation. We show that in phagocytic cells syntaxin 13 is localized to the recycling endosome compartment, while syntaxin 7 is found in late endosomes/lysosomes. Both proteins are recruited to the phagosome, but syntaxin 13 is acquired earlier and rapidly recycles off the phagosome, while syntaxin 7 is recruited later and continues to accumulate throughout the maturation process. Overexpression of truncated (cytosolic) forms of syntaxin 13 or 7 had no effect on phagocytosis, but exerted an inhibitory effect on phagosomal maturation. These results indicate that syntaxins 13 and 7 are both required for interaction of endosomes and/or lysosomes with the phagosome, but play distinct roles in the maturation process.