scispace - formally typeset
Search or ask a question

Showing papers on "Potential energy surface published in 2015"


Journal ArticleDOI
TL;DR: Based on the new ESIPT mechanism, the observed fluorescence quenching can be satisfactorily explained and the potential barrier heights among the local minima on the S1 surface imply competitive single and double proton transfer branches in the mechanism.
Abstract: The excited state intramolecular proton transfer (ESIPT) mechanisms of 2-(2-hydroxyphenyl)benzoxazole (HBO), bis-2,5-(2-benzoxazolyl)-hydroquinone (BBHQ) and 2,5-bis(5′-tert-butyl-benzoxazol-2′-yl)hydroquinone (DHBO) have been investigated using time-dependent density functional theory (TDDFT). The calculated vertical excitation energies based on the TDDFT method reproduced the experimental absorption and emission spectra well. Three kinds of stable structures were found on the S1 state potential energy surface (PES). A new ESIPT mechanism that differs from the one proposed previously (Mordzinski et al., Chem. Phys. Lett., 1983, 101, 291. and Lim et al., J. Am. Chem. Soc., 2006, 128, 14542.) is proposed. The new mechanism includes the possibility of simultaneous double proton transfer, or successive single transfers, in addition to the accepted single proton transfer mechanism. Hydrogen bond strengthening in the excited state was based on primary bond lengths, angles, IR vibrational spectra and hydrogen bond energy. Intramolecular charge transfer based on the frontier molecular orbitals (MOs) also supports the proposed mechanism of the ESIPT reaction. To further elucidate the proposed mechanism, reduced dimensionality PESs of the S0 and S1 states were constructed by keeping the O–H distance fixed at a series of values. The potential barrier heights among the local minima on the S1 surface imply competitive single and double proton transfer branches in the mechanism. Based on the new ESIPT mechanism, the observed fluorescence quenching can be satisfactorily explained.

248 citations


Journal ArticleDOI
TL;DR: As T(v) decreases, rotational energy appears to compensate for the decline in average vibrational energy in promoting dissociation, and the dissociation probability's dependence on v weakens.
Abstract: Accurate modeling of high-temperature hypersonic flows in the atmosphere requires consideration of collision-induced dissociation of molecular species and energy transfer between the translational and internal modes of the gas molecules. Here, we describe a study of the N2 + N2⟶N2 + 2N and N2 + N2⟶4N nitrogen dissociation reactions using the quasiclassical trajectory (QCT) method. The simulations used a new potential energy surface for the N4 system; the surface is an improved version of one that was presented previously. In the QCT calculations, initial conditions were determined based on a two-temperature model that approximately separates the translational-rotational temperature from the vibrational temperature of the N2 diatoms. Five values from 8000 K to 30,000 K were considered for each of the two temperatures. Over 2.4 × 10(9) trajectories were calculated. We present results for ensemble-averaged dissociation rate constants as functions of the translational-rotational temperature T and the vibrational temperature T(v). The rate constant depends more strongly on T when T(v) is low, and it depends more strongly on T(v) when T is low. Quasibound reactant states contribute significantly to the rate constants, as do exchange processes at higher temperatures. We discuss two sets of runs in detail: an equilibrium test set in which T = T(v) and a nonequilibrium test set in which T(v) < T. In the equilibrium test set, high-v and moderately-low-j molecules contribute most significantly to the overall dissociation rate, and this state specificity becomes stronger as the temperature decreases. Dissociating trajectories tend to result in a major loss of vibrational energy and a minor loss of rotational energy. In the nonequilibrium test set, as T(v) decreases while T is fixed, higher-j molecules contribute more significantly to the dissociation rate, dissociating trajectories tend to result in a greater rotational energy loss, and the dissociation probability's dependence on v weakens. In this way, as T(v) decreases, rotational energy appears to compensate for the decline in average vibrational energy in promoting dissociation. In both the equilibrium and nonequilibrium test sets, in every case, the average total internal energy loss in the dissociating trajectories is between 10.2 and 11.0 eV, slightly larger than the equilibrium potential energy change of N2 dissociation.

176 citations


Journal ArticleDOI
TL;DR: An accurate global analytic potential energy surface (PES) is reported for the F(-)+CH₃Cl SN2 reaction, which describes both the back-side and front-side attack substitution pathways as well as the proton-abstraction channel, and reveals a novel double inversion mechanism.
Abstract: Stereo-specific reaction mechanisms play a fundamental role in chemistry. The back-side attack inversion and front-side attack retention pathways of the bimolecular nucleophilic substitution (SN2) reactions are the textbook examples for stereo-specific chemical processes. Here, we report an accurate global analytic potential energy surface (PES) for the F(-)+CH₃Cl SN2 reaction, which describes both the back-side and front-side attack substitution pathways as well as the proton-abstraction channel. Moreover, reaction dynamics simulations on this surface reveal a novel double-inversion mechanism, in which an abstraction-induced inversion via a FH···CH₂Cl(-) transition state is followed by a second inversion via the usual [F···CH₃···Cl](-) saddle point, thereby opening a lower energy reaction path for retention than the front-side attack. Quasi-classical trajectory computations for the F(-)+CH₃Cl(ν1=0, 1) reactions show that the front-side attack is a fast direct, whereas the double inversion is a slow indirect process.

122 citations


Journal ArticleDOI
TL;DR: In this paper, a hybrid high-level (MP2/CBS): low-level method is used to determine adsorption structures and energies, and vibrational entropies and thermal enthalpy contributions are obtained from vibrational partition functions for the DFT+dispersion potential energy surface.
Abstract: Heats of adsorption of methane, ethane, and propane in H-chabazite (Si/Al = 14.4) have been measured and entropies have been derived from adsorption isotherms. For these systems quantum chemical ab initio calculations of Gibbs free energies have been performed. The deviations from the experimental values for methane, ethane, and propane are below 3 kJ/mol for the enthalpy, and the Gibbs free energy. A hybrid high-level (MP2/CBS): low-level (DFT+dispersion) method is used to determine adsorption structures and energies. Vibrational entropies and thermal enthalpy contributions are obtained from vibrational partition functions for the DFT+dispersion potential energy surface. Anharmonic corrections have been evaluated for each normal mode separately. One-dimensional Schrodinger equations are solved for potentials obtained by (curvilinear) distortions of the normal modes using a representation in internal coordinates.

120 citations


Journal ArticleDOI
TL;DR: In this article, a direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen molecules by providing forces between the four atoms.
Abstract: The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N2–N2 collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications.

117 citations


Journal ArticleDOI
31 Jul 2015-Science
TL;DR: Combined theory and experiment uncover subtle weakly bound states along the pathway of a widely studied chemical reaction.
Abstract: Photodetachment spectroscopy of the FH2− and FD2− anions allows for the direct observation of reactive resonances in the benchmark reaction F + H2 → HF + H. Using cooled anion precursors and a high-resolution electron spectrometer, we observe several narrow peaks not seen in previous experiments. Theoretical calculations, based on a highly accurate F + H2 potential energy surface, convincingly assign these peaks to resonances associated with quasibound states in the HF + H and DF + D product arrangements and with a quasibound state in the transition state region of the F + H2 reaction. The calculations also reveal quasibound states in the reactant arrangement, which have yet to be resolved experimentally.

104 citations


Journal ArticleDOI
TL;DR: It is shown that the reactivity depends on the site of impact in a complex fashion controlled by the topography of the potential energy surface rather than the barrier height alone, as predicted by the recently proposed sudden vector projection model.
Abstract: The dissociative chemisorption of water on rigid Ni(111) is investigated using a quasiclassical trajectory method on a nine-dimensional global potential energy surface based on a faithful permutation invariant fit of $\ensuremath{\sim}25\text{ }000$ density functional theory points. This full-dimensional model not only confirms the validity of our earlier reduced-dimensional model with 6 degrees of freedom, but also allows the examination of the influence of impact sites and incident angles. It is shown that the reactivity depends on the site of impact in a complex fashion controlled by the topography of the potential energy surface rather than the barrier height alone. In addition, the reaction is promoted by momenta both parallel and perpendicular to the surface, as predicted by the recently proposed sudden vector projection model.

91 citations


Journal ArticleDOI
TL;DR: Structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set are presented.
Abstract: A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation.

90 citations


Journal ArticleDOI
TL;DR: A new method is described for computing the interaction potential for R + O2 reactions, which decreases the uncertainty in the doublet potential and thence the rate constants by more than a factor of 2.
Abstract: State-of-the-art calculations of the C2H3O2 potential energy surface are presented. A new method is described for computing the interaction potential for R + O2 reactions. The method, which combines accurate determination of the quartet potential along the doublet minimum energy path with multireference calculations of the doublet/quartet splitting, decreases the uncertainty in the doublet potential and thence the rate constants by more than a factor of 2. The temperature- and pressure-dependent rate coefficients are computed using variable reaction coordinate transition-state theory, variational transition-state theory, and conventional transition-state theory, as implemented in a new RRKM/ME code. The main bimolecular product channels are CH2O + HCO at lower temperatures and CH2CHO + O at higher temperatures. Above 10 atm, the collisional stabilization of CH2CHOO directly competes with these two product channels. CH2CHOO decomposes primarily to CH2O + HCO. The next two most significant bimolecular produ...

86 citations


Journal ArticleDOI
02 Jan 2015-Science
TL;DR: A high-resolution crossed–molecular beam study on the Cl + HD → DCl + H reaction, which suggests that dynamical resonances trapped in the peculiar H-DCl vibrational adiabatic potential wells that result from chemical bond softening are possible.
Abstract: The Cl + H2 reaction is an important benchmark system in the study of chemical reaction dynamics that has always appeared to proceed via a direct abstraction mechanism, with no clear signature of reaction resonances. Here we report a high-resolution crossed–molecular beam study on the Cl + HD (v = 1, j = 0) → DCl + H reaction (where v is the vibrational quantum number and j is the rotational quantum number). Very few forward scattered products were observed. However, two distinctive peaks at collision energies of 2.4 and 4.3 kilocalories per mole for the DCl (v′ = 1) product were detected in the backward scattering direction. Detailed quantum dynamics calculations on a highly accurate potential energy surface suggested that these features originate from two very short-lived dynamical resonances trapped in the peculiar H-DCl (v′ = 2) vibrational adiabatic potential wells that result from chemical bond softening. We anticipate that dynamical resonances trapped in such wells exist in many reactions involving vibrationally excited molecules.

85 citations


Journal ArticleDOI
TL;DR: In this article, the photophysical properties of a series of cyclometalated gold arylacetylide complexes with different extents of π-conjugation at the doubly C-deprotonated [C^N^C] ligand via replacement of one of the phenyl moieties in the nonconjugated CH-AuIIICCPh-4-OMe by a naphthalenyl or a fluorenyl moiety (3-exo and 3-endo).
Abstract: We have performed theoretical analyses of the photophysical properties of a series of cyclometalated gold(III) arylacetylide complexes, [(C^N^C)AuIIICCPh-4-OMe], with different extents of π-conjugation at the doubly C-deprotonated [C^N^C] ligand via replacement of one of the phenyl moieties in the non-conjugated CH^N^C ligand (1) by a naphthalenyl (2) or a fluorenyl moiety (3-exo and 3-endo; HCH^N^CH = 2,6-diphenylpyridine). Conforming to the conventional wisdom that extended π-conjugation imposes rigidity on the structure of the 3IL(ππ*(C^N^C)) excited state (IL = intraligand), the calculated Huang–Rhys factors for the 3IL → S0 transition follow the order: 1 > 2 > 3-exo ∼ 3-endo, which corroborates qualitatively the experimental non-radiative decay rate constants, knr: 1 ≫ 2 > 3-exo, but not 3-endo. Density Functional Theory (DFT) calculations revealed that there is an additional triplet excited state minimum of 3LLCT character (LLCT = ligand-to-ligand charge transfer; 3[π(CCPh-4-OMe) → π*(C^N^C)]) for complexes 1 and 3-endo. This 3LLCT excited state, possessing a large out-of-plane torsional motion between the planes of the C^N^C and arylacetylide ligands, has a double minimum anharmonic potential energy surface along this torsional coordinate which leads to enhanced Franck–Condon overlap between the 3LLCT excited state and the ground state. Together with the larger spin–orbit coupling (SOC) and solvent reorganization energy for the 3LLCT → S0 transition compared with those for the 3IL → S0 transition, the calculated knr values for the 3LLCT → S0 transition are more than 690- and 1500-fold greater than the corresponding 3IL → S0 transition for complexes 1 and 3-endo respectively. Importantly, when this 3LLCT → S0 decay channel is taken into consideration, the non-radiative decay rate constant knr could be reproduced quantitatively and in the order of: 1 ≫ 3-endo, 2 > 3-exo. This challenges the common view that the facile non-radiative decay rate of transition metal complexes is due to the presence of a low-lying metal-centred 3dd or 3LMCT excited state (LMCT = ligand-to-metal charge transfer). By analysis of the relative order of MOs of the chromophoric [C^N^C] cyclometalated and arylacetylide ligands, one may discern why complexes 1 and 3-endo have a low-lying 3LLCT excited state while 3-exo does not.

Journal ArticleDOI
TL;DR: The present study found that 2-propargyl-β-tetrahydrocarbolines can undergo ring expansion and spirocyclization under gold catalysis, and detailed analysis of the complex PESs for substrates with different substituents indicated that the reaction selectivity is under dynamic control.
Abstract: In classical transition state theory, a transition state is connected to its reactant(s) and product(s). Recently, chemists found that reaction pathways may bifurcate after a transition state, leading to two or more sets of products. The product distribution for such a reaction containing a bifurcating potential energy surface (bPES) is usually determined by the shape of the bPES and dynamic factors. However, if the bPES leads to two intermediates (other than two products), which then undergo further transformations to give different final products, what factors control the selectivity is still not fully examined. This missing link in transition state theory is founded in the present study. Aiming to develop new methods for the synthesis of azocinoindole derivatives, we found that 2-propargyl-β-tetrahydrocarbolines can undergo ring expansion and spirocyclization under gold catalysis. DFT study revealed that the reaction starts with the intramolecular cyclization of the gold-activated 2-propargyl-β-tetrahy...

Journal ArticleDOI
TL;DR: Both double-harmonic intensity and rigorous MULTIMODE intensity calculations show the proton-transfer fundamental has strong intensity.
Abstract: A semiglobal potential energy surface (PES) and quartic force field (QFF) based on fitting high-level electronic structure energies are presented to describe the structures and spectroscopic properties of NNHNN+. The equilibrium structure of NNHNN+ is linear with the proton equidistant between the two nitrogen groups and thus of D∞h symmetry. Vibrational second-order perturbation theory (VPT2) calculations based on the QFF fails to describe the proton “rattle” motion, i.e., the antisymmetric proton stretch, due to the very flat nature of PES around the global minimum but performs properly for other modes with sharper potential wells. Vibrational self-consistent field/virtual state configuration interaction (VSCF/VCI) calculations using a version of MULTIMODE without angular momentum terms successfully describe this motion and predict the fundamental to be at 759 cm–1. This is in good agreement with the value of 746 cm–1 from a fixed-node diffusion Monte Carlo calculation and the experimental Ar-tagged res...

Journal ArticleDOI
TL;DR: A first-principles stereodynamical approach to the OH + HBr → H2O + Br reaction is developed, inspired by oriented molecular-beams experiments, to elucidate the mechanistic change from the low kinetic energy regime to high temperature.
Abstract: The OH + HBr → H2O + Br reaction, prototypical of halogen-atom liberating processes relevant to mechanisms for atmospheric ozone destruction, attracted frequent attention of experimental chemical kinetics: the nature of the unusual reactivity drop from low to high temperatures eluded a variety of theoretical efforts, ranking this one among the most studied four-atom reactions. Here, inspired by oriented molecular-beams experiments, we develop a first-principles stereodynamical approach. Thermalized sets of trajectories, evolving on a multidimensional potential energy surface quantum mechanically generated on-the-fly, provide a map of most visited regions at each temperature. Visualizations of rearrangements of bonds along trajectories and of the role of specific angles of reactants’ mutual approach elucidate the mechanistic change from the low kinetic energy regime (where incident reactants reorient to find the propitious alignment leading to reaction) to high temperature (where speed hinders adjustment o...

Journal ArticleDOI
TL;DR: A highly accurate, fifteen-dimensional potential energy surface (PES) of CH4 interacting on a rigid flat Ni(111) surface with the methodology of neural network (NN) fit to a database consisted of about 194 208 ab initio density functional theory (DFT) energy points is developed.
Abstract: In the present work, we develop a highly accurate, fifteen-dimensional potential energy surface (PES) of CH4 interacting on a rigid flat Ni(111) surface with the methodology of neural network (NN) fit to a database consisted of about 194 208 ab initio density functional theory (DFT) energy points. Some careful tests of the accuracy of the fitting PES are given through the descriptions of the fitting quality, vibrational spectrum of CH4 in vacuum, transition state (TS) geometries as well as the activation barriers. Using a 25-60-60-1 NN structure, we obtain one of the best PESs with the least root mean square errors: 10.11 meV for the entrance region and 17.00 meV for the interaction and product regions. Our PES can reproduce the DFT results very well in particular for the important TS structures. Furthermore, we present the sticking probability S-0 of ground state CH4 at the experimental surface temperature using some sudden approximations by Jackson's group. An in-depth explanation is given for the underestimated sticking probability. (C) 2015 AIP Publishing LLC.

Journal ArticleDOI
TL;DR: The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results.
Abstract: We report a permutationally invariant global potential energy surface (PES) for the H + CH4 system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (Jtot = 0) including the abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].

Journal ArticleDOI
TL;DR: In this article, the relaxation dynamics of hot H, N, and ${\mathrm{N}}_{2}$ on Pd(100), Ag(111), and Fe(110), respectively, are studied by means of ab initio molecular dynamics with electronic friction.
Abstract: The relaxation dynamics of hot H, N, and ${\mathrm{N}}_{2}$ on Pd(100), Ag(111), and Fe(110), respectively, is studied by means of ab initio molecular dynamics with electronic friction. This method is adapted here to account for the electron density changes caused by lattice vibrations, thus treating on an equal footing both electron-hole ($e\ensuremath{-}h$) pair and phonon excitations. We find that even if the latter increasingly dominate the heavier is the hot species, the contribution of $e\ensuremath{-}h$ pairs is by no means negligible in these cases because it gains relevance at the last stage of the relaxation process. The quantitative details of energy dissipation depend on the interplay of the potential energy surface, electronic structure, and kinetic factors.

Journal ArticleDOI
TL;DR: This work outlines a computational approach to allow automated sampling of chemical reaction pathways, including sampling of different chemical species at the reaction end-points, and provides a route to automated generation of a "roadmap" describing chemical reactivity.
Abstract: Automatically generating chemical reaction pathways is a significant computational challenge, particularly in the case where a given chemical system can exhibit multiple reactants and products, as well as multiple pathways connecting these. Here, we outline a computational approach to allow automated sampling of chemical reaction pathways, including sampling of different chemical species at the reaction end-points. The key features of this scheme are (i) introduction of a Hamiltonian which describes a reaction “string” connecting reactant and products, (ii) definition of reactant and product species as chemical connectivity graphs, and (iii) development of a scheme for updating the chemical graphs associated with the reaction end-points. By performing molecular dynamics sampling of the Hamiltonian describing the complete reaction pathway, we are able to sample multiple different paths in configuration space between given chemical products; by periodically modifying the connectivity graphs describing the chemical identities of the end-points we are also able to sample the allowed chemical space of the system. Overall, this scheme therefore provides a route to automated generation of a “roadmap” describing chemical reactivity. This approach is first applied to model dissociation pathways in formaldehyde, H2CO, as described by a parameterised potential energy surface (PES). A second application to the HCo(CO)3 catalyzed hydroformylation of ethene (oxo process), using density functional tight-binding to model the PES, demonstrates that our graph-based approach is capable of sampling the intermediate paths in the commonly accepted catalytic mechanism, as well as several secondary reactions. Further algorithmic improvements are suggested which will pave the way for treating complex multi-step reaction processes in a more efficient manner.

Journal ArticleDOI
TL;DR: Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well but significant differences are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f2-Symmetric) stretching, or e-symmetric bending excited states of methane.
Abstract: Initial state-selected reaction probabilities of the H + CH4 → H2 + CH3 reaction are calculated in full and reduced dimensionality on a recent neural network potential [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. The quantum dynamics calculation employs the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and rigorously studies the reaction for vanishing total angular momentum (J = 0). The calculations investigate the accuracy of the neutral network potential and study the effect resulting from a reduced-dimensional treatment. Very good agreement is found between the present results obtained on the neural network potential and previous results obtained on a Shepard interpolated potential energy surface. The reduced-dimensional calculations only consider motion in eight degrees of freedom and retain the C3v symmetry of the methyl fragment. Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well. Similar agreement is also found if reaction probabilities averaged over similar types of vibrational excitation of the methane reactant are considered. In contrast, significant differences between reduced and full-dimensional results are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f2-symmetric) stretching, or e-symmetric bending excited states of methane.

Journal ArticleDOI
TL;DR: A potential energy surface (PES) for H-atoms interacting with fcc Au(111) is constructed based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory.
Abstract: We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

Journal ArticleDOI
TL;DR: An unbiased general-purpose reaction sampling method, the stochastic surface walking based reaction sampling (SSW-RS) method, is developed and it is shown that the new method is a promising solution for reactivity prediction of complex reaction systems.
Abstract: The prediction of chemical reactivity and thus the design of new reaction systems are the key challenges in chemistry. Here, we develop an unbiased general-purpose reaction sampling method, the stochastic surface walking based reaction sampling (SSW-RS) method, and show that the new method is a promising solution for reactivity prediction of complex reaction systems. The SSW-RS method is capable of sampling both the configuration space of the reactant and the reaction space of pathways, owing to the combination of two recently developed theoretical methods, namely, the stochastic surface walking (SSW) method for potential energy surface (PES) exploration and the double-ended surface walking (DESW) method for building pathways. By integrating with first principles calculations, we show that the SSW-RS method can be applied to investigate the kinetics of complex organic reactions featuring many possible reaction channels and complex hydrogen-bonding networks, as demonstrated here using two examples, epoxypropane hydrolysis in aqueous solution and β-D-glucopyranose decomposition. Our results show that simultaneous sampling of the soft hydrogen-bonding conformations and the chemical reactions involving hard bond making/breaking can be achieved in the SSW-RS simulation, and the mechanism and kinetics can be predicted without a priori information on the system. Unexpected new chemistry for these reactions is revealed and discussed. In particular, despite many possible pathways for β-D-glucopyranose decomposition, the SSW-RS shows that only β-D-glucose and levoglucosan are kinetically preferred direct products and the 5- or 7-member ring products should be secondary products derived from β-D-glucose or levoglucosan. As a general tool for reactivity prediction, the SSW-RS opens a new route for the design of rational reactions.

Journal ArticleDOI
TL;DR: A quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES), which attributes the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product.
Abstract: The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the 18O + 32O2 and 16O + 36O2 reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the “reef” structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

Journal ArticleDOI
TL;DR: All stages of the electrocyclic ring-opening of 1,3-cyclohexadiene (CHD) were observed by time-resolved photoionization-photoelectron spectroscopy, revealing a 1B lifetime of 30 fs and a time-sequenced progression of Rydberg states that includes s, p, and d states of the series n = 3 to 6.
Abstract: All stages of the electrocyclic ring-opening of 1,3-cyclohexadiene (CHD) were observed by time-resolved photoionization-photoelectron spectroscopy. Spectra of the 1B state, previously unobserved using time-resolved methods, were obtained upon optical excitation using ultrashort laser pulses at 4.60 or 4.65 eV, followed by ionization with pulses at 3.81, 3.85, and 4.10 eV, revealing a 1B lifetime of 30 fs. In an experiment using 3.07 eV probe photons and a 4.69 eV pump, we observed a time-sequenced progression of Rydberg states that includes s, p, and d states of the series n = 3 to 6. The sequentiality of the Rydberg signals points to an ionization mechanism that captures the molecule on different points along the reaction path in 2A. A dynamic fit of the Rydberg signals, coupled with MS-CASPT2 calculations, reveals that as the wavepacket moves down the potential energy surface it acquires kinetic energy at a rate of 28 eV/ps before reaching the conical intersection to the 1A ground state. During the reac...

Journal ArticleDOI
TL;DR: This work investigates the performance of on-the-fly ab initio (OTF-AI) semiclassical dynamics combined with the thawed Gaussian approximation (TGA) for computing vibrationally resolved absorption and photoelectron spectra and probes the limit of the TGA to describe higher-resolution spectra, where long time dynamics is required.
Abstract: We investigate the performance of on-the-fly ab initio (OTF-AI) semiclassical dynamics combined with the thawed Gaussian approximation (TGA) for computing vibrationally resolved absorption and photoelectron spectra. Ammonia is used as a prototype of floppy molecules, whose potential energy surfaces display strong anharmonicity. We show that despite complications due to the presence of large amplitude motion, the main features of the spectra are captured by the OTF-AI-TGA, which—by definition—does not require any a priori knowledge of the potential energy surface. Moreover, the computed spectra are significantly better than those based on the popular global harmonic approximation. Finally, we probe the limit of the TGA to describe higher-resolution spectra, where long time dynamics is required.

Journal ArticleDOI
TL;DR: A Gaussian process model is shown that can be combined with a small number (of order 100) of scattering calculations to provide a multidimensional dependence of scattering observables on the experimentally controllable parameters as well as the potential energy surface (PES) parameters.
Abstract: We show that a Gaussian process model can be combined with a small number (of order 100) of scattering calculations to provide a multidimensional dependence of scattering observables on the experimentally controllable parameters (such as the collision energy or temperature) as well as the potential energy surface (PES) parameters For the case of Ar-C_{6}H_{6} collisions, we show that 200 classical trajectory calculations are sufficient to provide a ten-dimensional hypersurface, giving the dependence of the collision lifetimes on the collision energy, internal temperature, and eight PES parameters This can be used for solving the inverse scattering problem, for the efficient calculation of thermally averaged observables, for reducing the error of the molecular dynamics calculations by averaging over the PES variations, and for the analysis of the sensitivity of the observables to individual parameters determining the PES Trained by a combination of classical and quantum calculations, the model provides an accurate description of the quantum scattering cross sections, even near scattering resonances

Journal ArticleDOI
TL;DR: It is found that quantum tunnelling, due to transitions to higher energy eigenstates with significant amplitudes in the shallow (tautomeric) side of the potential, is unlikely to be a significant mechanism for the creation of adenine-thymine tautomers within DNA.
Abstract: The energies of the canonical (standard, amino-keto) and tautomeric (non-standard, imino-enol) charge-neutral forms of the adenine–thymine base pair (A–T and A*–T*, respectively) are calculated using density functional theory. The reaction pathway is then computed using a transition state search to provide the asymmetric double-well potential minima along with the barrier height and shape, which are combined to create the potential energy surface using a polynomial fit. The influence of quantum tunnelling on proton transfer within a base pair H-bond (modelled as the DFT deduced double-well potential) is then investigated by solving the time-dependent master equation for the density matrix. The effect on a quantum system by its surrounding water molecules is explored via the inclusion of a dissipative Lindblad term in the master equation, in which the environment is modelled as a heat bath of harmonic oscillators. It is found that quantum tunnelling, due to transitions to higher energy eigenstates with significant amplitudes in the shallow (tautomeric) side of the potential, is unlikely to be a significant mechanism for the creation of adenine–thymine tautomers within DNA, with thermally assisted coupling of the environment only able to boost the tunnelling probability to a maximum of 2 × 10−9. This is barely increased for different choices of the starting wave function or when the geometry of the potential energy surface is varied.

Journal ArticleDOI
TL;DR: Kinetic and dynamical calculations on the PES indicated a good agreement with the available experimental data and this PES is shown to reproduce energies, geometries, and harmonic frequencies of stationary points along the reaction path.
Abstract: A globally accurate full-dimensional potential energy surface (PES) for the OH + CH4 → H2O + CH3 reaction is developed using the permutation invariant polynomial-neural network approach based on ∼135,000 points at the level of correlated coupled cluster singles, doubles, and perturbative triples level with the augmented correlation consistent polarized valence triple-zeta basis set. The total root mean square fitting error is only 3.9 meV or 0.09 kcal/mol. This PES is shown to reproduce energies, geometries, and harmonic frequencies of stationary points along the reaction path. Kinetic and dynamical calculations on the PES indicated a good agreement with the available experimental data.

Journal ArticleDOI
TL;DR: The use of an improved starting point for the coupled cluster CCSD(T) calculations based on density functional theory with the PW91 exchange-correlation functional or Brueckner orbitals is described and the importance of including second-order spin-orbit corrections for closed-shell molecules is also described.
Abstract: The potential energy surfaces for the reactions of H2O with ThO2, PaO2(+), UO2(2+), and UO2(+) have been calculated at the coupled cluster CCSD(T) level extrapolated to the complete basis set limit with additional corrections including scalar relativistic and spin-orbit. The reactions proceed by the formation of an initial Lewis acid-base adduct (H2O)AnO2(0/+/2+) followed by a proton transfer to generate the dihydroxide AnO(OH)2(0/+/2+). The results are in excellent agreement with mass spectrometry experiments and prior calculations of hydrolysis reactions of the group 4 transition metal dioxides MO2. The differences in the energies of the stationary points on the potential energy surface are explained in terms of the charges on the system and the populations on the metal center. The use of an improved starting point for the coupled cluster CCSD(T) calculations based on density functional theory with the PW91 exchange-correlation functional or Brueckner orbitals is described. The importance of including second-order spin-orbit corrections for closed-shell molecules is also described. These improvements in the calculations are correlated with the 5f populations on the actinide.

Journal ArticleDOI
TL;DR: A compact permutationally invariant fit is shown to be the best one in combining precision and speed of evaluation of the CH4-H2O intrinsic two-body energy.
Abstract: The potential energy surface of the methane–water dimer is represented as the sum of a new intrinsic two-body potential energy surface and pre-existing intramolecular potentials for the monomers. Different fits of the CH4–H2O intrinsic two-body energy are reported. All these fits are based on 30467 ab initio interaction energies computed at CCSD(T)-F12b/haTZ (aug-cc-pVTZ for C and O, cc-pVTZ for H) level of theory. The benchmark fit is a full-dimensional, permutationally-invariant analytical representation with root-mean-square (rms) fitting error of 3.5 cm−1. Two other computationally more efficient two-body potentials are also reported, albeit with larger rms fitting errors. Of these a compact permutationally invariant fit is shown to be the best one in combining precision and speed of evaluation. An intrinsic two-body dipole moment surface is also obtained, based on MP2/haTZ expectation values, with an rms fitting error of 0.002 au. As with the potential, this dipole moment surface is combined with existing monomer ones to obtain the full surface. The vibrational ground state of the dimer and dissociation energy, D0, are determined by diffusion Monte Carlo calculations, and MULTIMODE calculations are performed for the IR spectrum of the intramolecular modes. The relative accuracy of the different intrinsic two-body potentials is analyzed by comparing the energetics and the harmonic frequencies of the global minimum well, and the maximum impact parameter employed in a sample methane–water scattering calculation.

Journal ArticleDOI
TL;DR: In this paper, a full set of cross sections for the vibrational ladder is obtained utilizing an accurate O 3 potential energy surface. And the relaxation time is derived based on the removal rate for the first excited vibrational level.